DIFLUCAN Solution for infusion Ref.[6842] Active ingredients: Fluconazole

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2018  Publisher: Pfizer Limited, Ramsgate Road, Sandwich, Kent CT13 9NJ, United Kingdom

Contraindications

Hypersensitivity to the active substance to related azole substances, or to any of the excipients listed in section 6.1.

Coadministration of terfenadine is contraindicated in patients receiving Diflucan at multiple doses of 400 mg per day or higher based upon results of a multiple dose interaction study. Coadministration of other medicinal products known to prolong the QT interval and which are metabolised via the cytochrome P450 (CYP) 3A4 such as cisapride, astemizole, pimozide, quinidine, and erythromycin are contraindicated in patients receiving fluconazole (see sections 4.4 and 4.5).

Special warnings and precautions for use

Tinea capitis

Fluconazole has been studied for treatment of tinea capitis in children. It was shown not to be superior to griseofulvin and the overall success rate was less than 20%. Therefore, Diflucan should not be used for tinea capitis.

Cryptococcosis

The evidence for efficacy of fluconazole in the treatment of cryptococcosis of other sites (e.g. pulmonary and cutaneous cryptococcosis) is limited, which prevents dosing recommendations.

Deep endemic mycoses

The evidence for efficacy of fluconazole in the treatment of other forms of endemic mycoses such as paracoccidioidomycosis, lymphocutaneous sporotrichosis and histoplasmosis is limited, which prevents specific dosing recommendations.

Renal system

Diflucan should be administered with caution to patients with renal dysfunction (see section 4.2).

Adrenal insufficiency

Ketoconazole is known to cause adrenal insufficiency, and this could also although rarely seen be applicable to fluconazole. Adrenal insufficiency relating to concomitant treatment with prednisone, see section 4.5 ‘The effect of fluconazole on other medicinal products’.

Hepatobiliary system

Diflucan should be administered with caution to patients with liver dysfunction.

Diflucan has been associated with rare cases of serious hepatic toxicity including fatalities, primarily in patients with serious underlying medical conditions. In cases of fluconazole associated hepatotoxicity, no obvious relationship to total daily dose, duration of therapy, sex or age of patient has been observed. Fluconazole hepatotoxicity has usually been reversible on discontinuation of therapy.

Patients who develop abnormal liver function tests during fluconazole therapy must be monitored closely for the development of more serious hepatic injury.

The patient should be informed of suggestive symptoms of serious hepatic effect (important asthenia, anorexia, persistent nausea, vomiting and jaundice). Treatment of fluconazole should be immediately discontinued and the patient should consult a physician.

Cardiovascular system

Some azoles, including fluconazole, have been associated with prolongation of the QT interval on the electrocardiogram. Fluconazole causes QT prolongation via the inhibition of Rectifier Potassium Channel current (Ikr). The QT prolongation caused by other medicinal products (such as amiodarone) may be amplified via the inhibition of cytochrome P450 (CYP) 3A4. During post-marketing surveillance, there have been very rare cases of QT prolongation and torsades de pointes in patients taking Diflucan. These reports included seriously ill patients with multiple confounding risk factors, such as structural heart disease, electrolyte abnormalities and concomitant treatment that may have been contributory. Patients with hypokalaemia and advanced cardiac failure are at an increased risk for the occurrence of life threatening ventricular arrhythmias and torsades de pointes.

Diflucan should be administered with caution to patients with potentially proarrhythmic conditions. Coadministration of other medicinal products known to prolong the QT interval and which are metabolised via the cytochrome P450 (CYP) 3A4 are contraindicated (see sections 4.3 and 4.5).

Halofantrine

Halofantrine has been shown to prolong QTc interval at the recommended therapeutic dose and is a substrate of CYP3A4. The concomitant use of fluconazole and halofantrine is therefore not recommended (see section 4.5).

Dermatological reactions

Patients have rarely developed exfoliative cutaneous reactions, such as Stevens-Johnson syndrome and toxic epidermal necrolysis, during treatment with fluconazole. AIDS patients are more prone to the development of severe cutaneous reactions to many medicinal products. If a rash, which is considered attributable to fluconazole, develops in a patient treated for a superficial fungal infection, further therapy with this medicinal product should be discontinued. If patients with invasive/systemic fungal infections develop rashes, they should be monitored closely and fluconazole discontinued if bullous lesions or erythema multiforme develop.

Hypersensitivity

In rare cases anaphylaxis has been reported (see section 4.3).

Cytochrome P450

Fluconazole is a moderate CYP2C9 and CYP3A4 inhibitor. Fluconazole is also a strong inhibitor of CYP2C19. Diflucan treated patients who are concomitantly treated with medicinal products with a narrow therapeutic window metabolised through CYP2C9, CYP2C19 and CYP3A4, should be monitored (see section 4.5).

Terfenadine

The coadministration of fluconazole at doses lower than 400 mg per day with terfenadine should be carefully monitored (see sections 4.3 and 4.5).

Excipients

This medicinal product contains 0.154 mmol sodium per ml. To be taken into consideration by patients on a controlled sodium diet.

Interaction with other medicinal products and other forms of interaction

Concomitant use of the following other medicinal products is contraindicated

Cisapride

There have been reports of cardiac events including torsades de pointes in patients to whom fluconazole and cisapride were coadministered. A controlled study found that concomitant fluconazole 200 mg once daily and cisapride 20 mg four times a day yielded a significant increase in cisapride plasma levels and prolongation of QTc interval. Concomitant treatment with fluconazole and cisapride is contraindicated (see section 4.3).

Terfenadine

Because of the occurrence of serious cardiac dysrhythmias secondary to prolongation of the QTc interval in patients receiving azole antifungals in conjunction with terfenadine, interaction studies have been performed. One study at a 200 mg daily dose of fluconazole failed to demonstrate a prolongation in QTc interval. Another study at a 400 mg and 800 mg daily dose of fluconazole demonstrated that fluconazole taken in doses of 400 mg per day or greater significantly increases plasma levels of terfenadine when taken concomitantly. The combined use of fluconazole at doses of 400 mg or greater with terfenadine is contraindicated (see section 4.3). The coadministration of fluconazole at doses lower than 400 mg per day with terfenadine should be carefully monitored.

Astemizole

Concomitant administration of fluconazole with astemizole may decrease the clearance of astemizole. Resulting increased plasma concentrations of astemizole can lead to QT prolongation and rare occurrences of torsades de pointes. Coadministration of fluconazole and astemizole is contraindicated (see section 4.3).

Pimozide

Although not studied in vitro or in vivo, concomitant administration of fluconazole with pimozide may result in inhibition of pimozide metabolism. Increased pimozide plasma concentrations can lead to QT prolongation and rare occurrences of torsades de pointes. Coadministration of fluconazole and pimozide is contraindicated (see section 4.3).

Quinidine

Although not studied in vitro or in vivo, concomitant administration of fluconazole with quinidine may result in inhibition of quinidine metabolism. Use of quinidine has been associated with QT prolongation and rare occurrences of torsades de pointes. Coadministration of fluconazole and quinidine is contraindicated (see section 4.3).

Erythromycin

Concomitant use of fluconazole and erythromycin has the potential to increase the risk of cardiotoxicity (prolonged QT interval, torsades de pointes) and consequently sudden heart death. Coadministration of fluconazole and erythromycin is contraindicated (see section 4.3).

Concomitant use of the following other medicinal products cannot be recommended

Halofantrine

Fluconazole can increase halofantrine plasma concentration due to an inhibitory effect on CYP3A4. Concomitant use of fluconazole and halofantrine has the potential to increase the risk of cardiotoxicity (prolonged QT interval, torsades de pointes) and consequently sudden heart death. This combination should be avoided (see section 4.4).

Concomitant use that should be used with caution

Amiodarone

Concomitant administration of fluconazole with amiodarone may increase QT prolongation. Caution must be exercised if the concomitant use of fluconazole and amiodarone is necessary, notably with high dose fluconazole (800 mg).

Concomitant use of the following other medicinal products lead to precautions and dose adjustments

The effect of other medicinal products on fluconazole

Rifampicin

Concomitant administration of fluconazole and rifampicin resulted in a 25% decrease in the AUC and a 20% shorter half-life of fluconazole. In patients receiving concomitant rifampicin, an increase of the fluconazole dose should be considered.

Interaction studies have shown that when oral fluconazole is coadministered with food, cimetidine, antacids or following total body irradiation for bone marrow transplantation, no clinically significant impairment of fluconazole absorption occurs.

Hydrochlorothiazide

In a pharmacokinetic interaction study, coadministration of multiple-dose hydrochlorothiazide to healthy volunteers receiving fluconazole increased plasma concentration of fluconazole by 40%. An effect of this magnitude should not necessitate a change in the fluconazole dose regimen in subjects receiving concomitant diuretics.

The effect of fluconazole on other medicinal products

Fluconazole is a moderate inhibitor of cytochrome P450 (CYP) isoenzymes 2C9 and 3A4. Fluconazole is also a strong inhibitor of the isozyme CYP2C19. In addition to the observed/documented interactions mentioned below, there is a risk of increased plasma concentration of other compounds metabolised by CYP2C9, CYP2C19 and CYP3A4 coadministered with fluconazole. Therefore, caution should be exercised when using these combinations and the patients should be carefully monitored. The enzyme inhibiting effect of fluconazole persists 4-5 days after discontinuation of fluconazole treatment due to the long half-life of fluconazole (see section 4.3).

Alfentanil

During concomitant treatment with fluconazole (400 mg) and intravenous alfentanil (20 μg/kg) in healthy volunteers the alfentanil AUC10 increased 2-fold, probably through inhibition of CYP3A4.

Dose adjustment of alfentanil may be necessary.

Amitriptyline, nortriptyline

Fluconazole increases the effect of amitriptyline and nortriptyline. 5-nortriptyline and/or S-amitriptyline may be measured at initiation of the combination therapy and after one week. Dose of amitriptyline/nortriptyline should be adjusted, if necessary.

Amphotericin B

Concurrent administration of fluconazole and amphotericin B in infected normal and immunosuppressed mice showed the following results: a small additive antifungal effect in systemic infection with C. albicans, no interaction in intracranial infection with Cryptococcus neoformans, and antagonism of the two medicinal products in systemic infection with Aspergillus fumigatus. The clinical significance of results obtained in these studies is unknown.

Anticoagulants

In post-marketing experience, as with other azole antifungals, bleeding events (bruising, epistaxis, gastrointestinal bleeding, haematuria, and melena) have been reported, in association with increases in prothrombin time in patients receiving fluconazole concurrently with warfarin. During concomitant treatment with fluconazole and warfarin the prothrombin time was prolonged up to 2-fold, probably due to an inhibition of the warfarin metabolism through CYP2C9. In patients receiving coumarin-type or indanedione anticoagulants concurrently with fluconazole the prothrombin time should be carefully monitored. Dose adjustment of the anticoagulant may be necessary.

Benzodiazepines (short acting), i.e. midazolam, triazolam

Following oral administration of midazolam, fluconazole resulted in substantial increases in midazolam concentrations and psychomotor effects. Concomitant intake of fluconazole 200 mg and midazolam 7.5 mg orally increased the midazolam AUC and half-life 3.7-fold and 2.2-fold, respectively. Fluconazole 200 mg daily given concurrently with triazolam 0.25 mg orally increased the triazolam AUC and half-life 4.4-fold and 2.3-fold, respectively. Potentiated and prolonged effects of triazolam have been observed at concomitant treatment with fluconazole. If concomitant benzodiazepine therapy is necessary in patients being treated with fluconazole, consideration should be given to decreasing the benzodiazepine dose, and the patients should be appropriately monitored.

Carbamazepine

Fluconazole inhibits the metabolism of carbamazepine and an increase in serum carbamazepine of 30% has been observed. There is a risk of developing carbamazepine toxicity. Dose adjustment of carbamazepine may be necessary depending on concentration measurements/effect.

Calcium channel blockers

Certain calcium channel antagonists (nifedipine, isradipine, amlodipine, verapamil and felodipine) are metabolised by CYP3A4. Fluconazole has the potential to increase the systemic exposure of the calcium channel antagonists. Frequent monitoring for adverse events is recommended.

Celecoxib

During concomitant treatment with fluconazole (200 mg daily) and celecoxib (200 mg) the celecoxib Cmax and AUC increased by 68% and 134%, respectively. Half of the celecoxib dose may be necessary when combined with fluconazole.

Cyclophosphamide

Combination therapy with cyclophosphamide and fluconazole results in an increase in serum bilirubin and serum creatinine. The combination may be used while taking increased consideration to the risk of increased serum bilirubin and serum creatinine.

Fentanyl

One fatal case of fentanyl intoxication due to possible fentanyl fluconazole interaction was reported. Furthermore, it was shown in healthy volunteers that fluconazole delayed the elimination of fentanyl significantly. Elevated fentanyl concentration may lead to respiratory depression. Patients should be monitored closely for the potential risk of respiratory depression. Dosage adjustment of fentanyl may be necessary.

HMG CoA reductase inhibitors

The risk of myopathy and rhabdomyolysis increases when fluconazole is coadministered with HMG-CoA reductase inhibitors metabolised through CYP3A4, such as atorvastatin and simvastatin, or through CYP2C9, such as fluvastatin. If concomitant therapy is necessary, the patient should be observed for symptoms of myopathy and rhabdomyolysis and creatine kinase should be monitored. HMG-CoA reductase inhibitors should be discontinued if a marked increase in creatine kinase is observed or myopathy/rhabdomyolysis is diagnosed or suspected.

Olaparib

Moderate inhibitors of CYP3A4 such as fluconazole increase olaparib plasma concentrations; concomitant use is not recommended. If the combination cannot be avoided, limit the dose of olaparib to 200 mg twice daily.

Immunosuppressors (i.e. ciclosporin, everolimus, sirolimus and tacrolimus)

Ciclosporin: Fluconazole significantly increases the concentration and AUC of ciclosporin. During concomitant treatment with fluconazole 200 mg daily and ciclosporin (2.7 mg/kg/day) there was a 1.8-fold increase in ciclosporin AUC. This combination may be used by reducing the dose of ciclosporin depending on ciclosporin concentration.

Everolimus: Although not studied in vivo or in vitro, fluconazole may increase serum concentrations of everolimus through inhibition of CYP3A4.

Sirolimus: Fluconazole increases plasma concentrations of sirolimus presumably by inhibiting the metabolism of sirolimus via CYP3A4 and P-glycoprotein. This combination may be used with a dose adjustment of sirolimus depending on the effect/concentration measurements.

Tacrolimus: Fluconazole may increase the serum concentrations of orally administered tacrolimus up to 5 times due to inhibition of tacrolimus metabolism through CYP3A4 in the intestines. No significant pharmacokinetic changes have been observed when tacrolimus is given intravenously. Increased tacrolimus levels have been associated with nephrotoxicity. Dose of orally administered tacrolimus should be decreased depending on tacrolimus concentration.

Losartan

Fluconazole inhibits the metabolism of losartan to its active metabolite (E-31 74) which is responsible for most of the angiotensin II-receptor antagonism which occurs during treatment with losartan. Patients should have their blood pressure monitored continuously.

Methadone

Fluconazole may enhance the serum concentration of methadone. Dose adjustment of methadone may be necessary.

Non-steroidal anti-inflammatory drugs

The Cmax and AUC of flurbiprofen was increased by 23% and 81%, respectively, when coadministered with fluconazole compared to administration of flurbiprofen alone. Similarly, the Cmax and AUC of the pharmacologically active isomer [S-(+)-ibuprofen] was increased by 15% and 82%, respectively, when fluconazole was coadministered with racemic ibuprofen (400 mg) compared to administration of racemic ibuprofen alone.

Although not specifically studied, fluconazole has the potential to increase the systemic exposure of other NSAIDs that are metabolised by CYP2C9 (e.g. naproxen, lornoxicam, meloxicam, diclofenac). Frequent monitoring for adverse events and toxicity related to NSAIDs is recommended. Adjustment of dose of NSAIDs may be needed.

Phenytoin

Fluconazole inhibits the hepatic metabolism of phenytoin. Concomitant repeated administration of 200 mg fluconazole and 250 mg phenytoin intravenously, caused an increase of the phenytoin AUC24 by 75% and Cmin by 128%. With coadministration, serum phenytoin concentration levels should be monitored in order to avoid phenytoin toxicity.

Prednisone

There was a case report that a liver-transplanted patient treated with prednisone developed acute adrenal cortex insufficiency when a three month therapy with fluconazole was discontinued. The discontinuation of fluconazole presumably caused an enhanced CYP3A4 activity which led to increased metabolism of prednisone. Patients on long- term treatment with fluconazole and prednisone should be carefully monitored for adrenal cortex insufficiency when fluconazole is discontinued.

Rifabutin

Fluconazole increases serum concentrations of rifabutin, leading to increase in the AUC of rifabutin up to 80%. There have been reports of uveitis in patients to whom fluconazole and rifabutin were coadministered. In combination therapy, symptoms of rifabutin toxicity should be taken into consideration.

Saquinavir

Fluconazole increases the AUC and Cmax of saquinavir with approximately 50% and 55% respectively, due to inhibition of saquinavir’s hepatic metabolism by CYP3A4 and inhibition of P-glycoprotein. Interaction with saquinavir/ritonavir has not been studied and might be more marked. Dose adjustment of saquinavir may be necessary.

Sulfonylureas

Fluconazole has been shown to prolong the serum half-life of concomitantly administered oral sulfonylureas (e.g. chlorpropamide, glibenclamide, glipizide, tolbutamide) in healthy volunteers. Frequent monitoring of blood glucose and appropriate reduction of sulfonylurea dose is recommended during coadministration.

Theophylline

In a placebo controlled interaction study, the administration of fluconazole 200 mg for 14 days resulted in an 18% decrease in the mean plasma clearance rate of theophylline. Patients who are receiving high dose theophylline or who are otherwise at increased risk for theophylline toxicity should be observed for signs of theophylline toxicity while receiving fluconazole. Therapy should be modified if signs of toxicity develop.

Tofacitinib

Exposure of tofacitinib is increased when tofacitinib is co-administered with medications that result in both moderate inhibition of CYP3A4 and strong inhibition of CYP2C19 (e.g. fluconazole). Therefore, it is recommended to reduce tofacitinib dose to 5 mg once daily when it is combined with these drugs.

Vinca alkaloids

Although not studied, fluconazole may increase the plasma levels of the vinca alkaloids (e.g. vincristine and vinblastine) and lead to neurotoxicity, which is possibly due to an inhibitory effect on CYP3A4.

Vitamin A

Based on a case-report in one patient receiving combination therapy with all-trans-retinoid acid (an acid form of vitamin A) and fluconazole, CNS related undesirable effects have developed in the form of pseudotumour cerebri, which disappeared after discontinuation of fluconazole treatment. This combination may be used but the incidence of CNS related undesirable effects should be borne in mind.

Voriconazole (CYP2C9, CYP2C19 and CYP3A4 inhibitor)

Coadministration of oral voriconazole (400 mg Q12h for 1 day, then 200 mg Q12h for 2.5 days) and oral fluconazole (400 mg on day 1, then 200 mg Q24h for 4 days) to 8 healthy male subjects resulted in an increase in Cmax and AUC of voriconazole by an average of 57% (90% CI: 20%, 107%) and 79% (90% CI: 40%, 128%), respectively. The reduced dose and/or frequency of voriconazole and fluconazole that would eliminate this effect have not been established. Monitoring for voriconazole associated adverse events is recommended if voriconazole is used sequentially after fluconazole.

Zidovudine

Fluconazole increases Cmax and AUC of zidovudine by 84% and 74%, respectively, due to an approx. 45% decrease in oral zidovudine clearance. The half-life of zidovudine was likewise prolonged by approximately 128% following combination therapy with fluconazole. Patients receiving this combination should be monitored for the development of zidovudine-related adverse reactions. Dose reduction of zidovudine may be considered.

Azithromycin

An open-label, randomized, three-way crossover study in 18 healthy subjects assessed the effect of a single 1200 mg oral dose of azithromycin on the pharmacokinetics of a single 800 mg oral dose of fluconazole as well as the effects of fluconazole on the pharmacokinetics of azithromycin. There was no significant pharmacokinetic interaction between fluconazole and azithromycin.

Oral contraceptives

Two pharmacokinetic studies with a combined oral contraceptive have been performed using multiple doses of fluconazole. There were no relevant effects on hormone level in the 50 mg fluconazole study, while at 200 mg daily, the AUCs of ethinyl estradiol and levonorgestrel were increased 40% and 24%, respectively. Thus, multiple dose use of fluconazole at these doses is unlikely to have an effect on the efficacy of the combined oral contraceptive.

Ivacaftor

Co-administration with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, increased ivacaftor exposure by 3-fold and hydroxymethyl-ivacaftor (M1) exposure by 1.9-fold. A reduction of the ivacaftor dose to 150 mg once daily is recommended for patients taking concomitant moderate CYP3A inhibitors, such as fluconazole and erythromycin.

Fertility, pregnancy and lactation

Pregnancy

An observational study has suggested an increased risk of spontaneous abortion in women treated with fluconazole during the first trimester.

There have been reports of multiple congenital abnormalities (including brachycephalia, ears dysplasia, giant anterior fontanelle, femoral bowing and radio-humeral synostosis) in infants whose mothers were treated for at least three or more months with high doses (400-800 mg daily) of fluconazole for coccidioidomycosis. The relationship between fluconazole use and these events is unclear.

Studies in animals have shown reproductive toxicity (see section 5.3).

Fluconazole in standard doses and short-term treatments should not be used in pregnancy unless clearly necessary.

Fluconazole in high dose and/or in prolonged regimens should not be used during pregnancy except for potentially life-threatening infections.

Breast-feeding

Fluconazole passes into breast milk to reach concentrations similar to those in plasma (see section 5.2). Breast-feeding may be maintained after a single dose of 150 mg fluconazole. Breast-feeding is not recommended after repeated use or after high dose fluconazole. The developmental and health benefits of breast-feeding should be considered along with the mother’s clinical need for Diflucan and any potential adverse effects on the breast-fed child from Diflucan or from the underlying maternal condition.

Fertility

Fluconazole did not affect the fertility of male or female rats (see section 5.3).

Effects on ability to drive and use machines

No studies have been performed on the effects of Diflucan on the ability to drive or use machines.

Patients should be warned about the potential for dizziness or seizures (see section 4.8) while taking Diflucan and should be advised not to drive or operate machines if any of these symptoms occur.

Undesirable effects

The most frequently (>1/10) reported adverse reactions are headache, abdominal pain, diarrhoea, nausea, vomiting, alanine aminotransferase increased, aspartate aminotransferase increased, blood alkaline phosphatase increased and rash.

The following adverse reactions have been observed and reported during treatment with Diflucan with the following frequencies: Very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000), not known (cannot be estimated from the available data).

Blood and the lymphatic system disorders

Uncommon: Anaemia

Rare: Agranulocytosis, leukopenia, thrombocytopenia, neutropenia

Immune system disorders

Rare: Anaphylaxis

Metabolism and nutrition disorders

Uncommon: Decreased appetite

Rare: Hypercholesterolaemia, hypertriglyceridaemia, hypokalaemia

Psychiatric disorders

Uncommon: Somnolence, insomnia

Nervous system disorders

Common: Headache

Uncommon: Silures, paraesthesia, dizziness, taste perversion

Rare: Tremor

Ear and labyrinth disorders

Uncommon: Vertigo

Cardiac disorders

Rare: Torsade de pointes (see section 4.4), QT prolongation (see section 4.4)

Gastrointestinal disorders

Common: Abdominal pain, vomiting, diarrhoea, nausea

Uncommon: Constipation dyspepsia, flatulence, dry mouth

Hepatobiliary disorders

Common: Alanine aminotransferase increased (see section 4.4), aspartate aminotransferase increased (see section 4.4), blood alkaline phosphatase increased (see section 4.4)

Uncommon: Cholestasis (see section 4.4), jaundice (see section 4.4), bilirubin increased (see section 4.4)

Rare: Hepatic failure (see section 4.4), hepatocellular necrosis (see section 4.4), hepatitis (see section 4.4), hepatocellular damage (see section 4.4)

Skin and subcutaneous tissue disorders

Common: Rash (see section 4.4)

Uncommon: Drug eruption* (see section 4.4), urticaria (see section 4.4), pruritus, increased sweating

Rare: Toxic epidermal necrolysis, (see section 4.4), Stevens-Johnson syndrome (see section 4.4), acute generalised exanthematous-pustulosis (see section 4.4), dermatitis exfoliative, angioedema, face oedema, alopecia

Not Known: Drug reaction with eosinophilia and systemic symptoms (DRESS)

Musculoskeletal and connective tissue disorders

Uncommon: Myalgia

General disorders and administration site conditions

Uncommon: Fatigue, malaise, asthenia, fever

* including Fixed Drug Eruption

Paediatric population

The pattern and incidence of adverse reactions and laboratory abnormalities recorded during paediatric clinical trials are comparable to those seen in adults.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.