GILENYA Hard capsule Ref.[8575] Active ingredients: Fingolimod

Source: European Medicines Agency (EU)  Revision Year: 2019  Publisher: Novartis Europharm Limited, Vista Building, Elm Park, Merrion Road, Dublin 4, Ireland

Contraindications

  • Immunodeficiency syndrome.
  • Patients with increased risk for opportunistic infections, including immunocompromised patients (including those currently receiving immunosuppressive therapies or those immunocompromised by prior therapies).
  • Severe active infections, active chronic infections (hepatitis, tuberculosis).
  • Active malignancies.
  • Severe liver impairment (Child-Pugh class C).
  • Patients who in the previous 6 months had myocardial infarction (MI), unstable angina pectoris, stroke/transient ischaemic attack (TIA), decompensated heart failure (requiring inpatient treatment), or New York Heart Association (NYHA) class III/IV heart failure (see section 4.4).
  • Patients with severe cardiac arrhythmias requiring anti-arrhythmic treatment with class Ia or class III anti-arrhythmic medicinal products (see section 4.4).
  • Patients with second-degree Mobitz type II atrioventricular (AV) block or third-degree AV block, or sick-sinus syndrome, if they do not wear a pacemaker (see section 4.4).
  • Patients with a baseline QTc interval ≥500 msec (see section 4.4).
  • During pregnancy and in women of childbearing potential not using effective contraception (see sections 4.4 and 4.6).
  • Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Special warnings and precautions for use

Bradyarrhythmia

Initiation of Gilenya treatment results in a transient decrease in heart rate and may also be associated with atrioventricular conduction delays, including the occurrence of isolated reports of transient, spontaneously resolving complete AV block (see sections 4.8 and 5.1).

After the first dose, the decline in heart rate starts within one hour, and is maximal within 6 hours. This post-dose effect persists over the following days, although usually to a milder extent, and usually abates over the next weeks. With continued administration, the average heart rate returns towards baseline within one month. However individual patients may not return to baseline heart rate by the end of the first month. Conduction abnormalities were typically transient and asymptomatic. They usually did not require treatment and resolved within the first 24 hours on treatment. If necessary, the decrease in heart rate induced by fingolimod can be reversed by parenteral doses of atropine or isoprenaline.

All patients should have an ECG and blood pressure measurement performed prior to and 6 hours after the first dose of Gilenya. All patients should be monitored for a period of 6 hours for signs and symptoms of bradycardia with hourly heart rate and blood pressure measurement. Continuous (real time) ECG monitoring during this 6 hour period is recommended.

The same precautions as for the first dose are recommended when patients are switched from the 0.25 mg to the 0.5 mg daily dose.

Should post-dose bradyarrhythmia-related symptoms occur, appropriate clinical management should be initiated and monitoring should be continued until the symptoms have resolved. Should a patient require pharmacological intervention during the first-dose monitoring, overnight monitoring in a medical facility should be instituted and the first-dose monitoring should be repeated after the second dose of Gilenya.

If the heart rate at 6 hours is the lowest since the first dose was administered (suggesting that the maximum pharmacodynamic effect on the heart may not yet be manifest), monitoring should be extended by at least 2 hours and until heart rate increases again. Additionally, if after 6 hours, the heart rate is <45 bpm in adults, <55 bpm in paediatric patients aged 12 years and above, or <60 bpm in paediatric patients aged 10 to below 12 years, or the ECG shows new onset second degree or higher grade AV block or a QTc interval ≥500 msec, extended monitoring (at least overnight monitoring), should be performed, and until the findings have resolved. The occurrence at any time of third degree AV block should also lead to extended monitoring (at least overnight monitoring).

The effects on heart rate and atrioventricular conduction may recur on re-introduction of Gilenya treatment depending on duration of the interruption and time since start of Gilenya treatment. The same first dose monitoring as for treatment initiation is recommended when treatment is interrupted for:

  • 1 day or more during the first 2 weeks of treatment.
  • more than 7 days during weeks 3 and 4 of treatment.
  • more than 2 weeks after one month of treatment.

If the treatment interruption is of shorter duration than the above, the treatment should be continued with the next dose as planned.

Very rare cases of T-wave inversion have been reported in adult patients treated with fingolimod. In case of T-wave inversion, the prescriber should ensure that there are no associated myocardial ischaemia signs or symptoms. If myocardial ischaemia is suspected, it is recommended to seek advice from a cardiologist.

Due to the risk of serious rhythm disturbances or significant bradycardia, Gilenya should not be used in patients with sino-atrial heart block, a history of symptomatic bradycardia, recurrent syncope or cardiac arrest, or in patients with significant QT prolongation (QTc>470 msec [adult female], QTc >460 msec [paediatric female] or >450 msec [adult and paediatric male]), uncontrolled hypertension or severe sleep apnoea (see also section 4.3). In such patients, treatment with Gilenya should be considered only if the anticipated benefits outweigh the potential risks, and advice from a cardiologist sought prior to initiation of treatment in order to determine the most appropriate monitoring. At least overnight extended monitoring is recommended for treatment initiation (see also section 4.5).

Gilenya has not been studied in patients with arrhythmias requiring treatment with class Ia (e.g. quinidine, disopyramide) or class III (e.g. amiodarone, sotalol) antiarrhythmic medicinal products. Class Ia and class III antiarrhythmic medicinal products have been associated with cases of torsades de pointes in patients with bradycardia (see section 4.3).

Experience with Gilenya is limited in patients receiving concurrent therapy with beta blockers, heart-rate-lowering calcium channel blockers (such as verapamil or diltiazem), or other substances which may decrease heart rate (e.g. ivabradine, digoxin, anticholinesteratic agents or pilocarpine). Since the initiation of Gilenya treatment is also associated with slowing of the heart rate (see also section 4.8, Bradyarrhythmia), concomitant use of these substances during Gilenya initiation may be associated with severe bradycardia and heart block. Because of the potential additive effect on heart rate treatment with Gilenya should not be initiated in patients who are concurrently treated with these substances (see also section 4.5). In such patients, treatment with Gilenya should be considered only if the anticipated benefits outweigh the potential risks. If treatment with Gilenya is considered, advice from a cardiologist should be sought regarding the switch to non heart-rate lowering medicinal products prior to initiation of treatment. If the heart-rate-lowering medication cannot be stopped, cardiologist’s advice should be sought to determine appropriate first dose monitoring, at least overnight extended monitoring is recommended (see also section 4.5).

QT interval

In a thorough QT interval study of doses of 1.25 or 2.5 mg fingolimod at steady-state, when a negative chronotropic effect of fingolimod was still present, fingolimod treatment resulted in a prolongation of QTcI, with the upper limit of the 90% CI ≤13.0 ms. There is no dose- or exposure-response relationship of fingolimod and QTcI prolongation. There is no consistent signal of increased incidence of QTcI outliers, either absolute or change from baseline, associated with fingolimod treatment.

The clinical relevance of this finding is unknown. In the multiple sclerosis studies, clinically relevant effects on prolongation of the QTc-interval have not been observed but patients at risk for QT prolongation were not included in clinical studies.

Medicinal products that may prolong QTc interval are best avoided in patients with relevant risk factors, for example, hypokalaemia or congenital QT prolongation.

Immunosuppressive effects

Fingolimod has an immunosuppressive effect that predisposes patients to an infection risk, including opportunistic infections that can be fatal, and increases the risk of developing lymphomas and other malignancies, particularly those of the skin. Physicians should carefully monitor patients, especially those with concurrent conditions or known factors, such as previous immunosuppressive therapy. If this risk is suspected, discontinuation of treatment should be considered by the physician on a case-by- case basis (see also section 4.4 “Infections” and “Cutaneous neoplasms” and section 4.8 “Lymphomas”).

Infections

A core pharmacodynamic effect of Gilenya is a dose-dependent reduction of the peripheral lymphocyte count to 20-30% of baseline values. This is due to the reversible sequestration of lymphocytes in lymphoid tissues (see section 5.1).

Before initiating treatment with Gilenya, a recent complete blood count (CBC) (i.e. within 6 months or after discontinuation of prior therapy) should be available. Assessments of CBC are also recommended periodically during treatment, at month 3 and at least yearly thereafter, and in case of signs of infection. Absolute lymphocyte count <0.2x109/l, if confirmed, should lead to treatment interruption until recovery, because in clinical studies, fingolimod treatment was interrupted in patients with absolute lymphocyte count <0.2x109/l.

Initiation of treatment with Gilenya should be delayed in patients with severe active infection until resolution.

Patients need to be assessed for their immunity to varicella (chickenpox) prior to Gilenya treatment. It is recommended that patients without a health care professional confirmed history of chickenpox or documentation of a full course of vaccination with varicella vaccine undergo antibody testing to varicella zoster virus (VZV) before initiating Gilenya therapy. A full course of vaccination for antibody-negative patients with varicella vaccine is recommended prior to commencing treatment with Gilenya (see section 4.8). Initiation of treatment with Gilenya should be postponed for 1 month to allow full effect of vaccination to occur.

The immune system effects of Gilenya may increase the risk of infections, including opportunistic infections (see section 4.8). Effective diagnostic and therapeutic strategies should be employed in patients with symptoms of infection while on therapy. When evaluating a patient with a suspected infection that could be serious, referral to a physician experienced in treating infections should be considered. During treatment, patients receiving Gilenya should be instructed to report promptly symptoms of infection to their physician.

Suspension of Gilenya should be considered if a patient develops a serious infection and consideration of benefit-risk should be undertaken prior to re-initiation of therapy.

Cases of cryptococcal meningitis (a fungal infection), sometimes fatal, have been reported in the post- marketing setting after approximately 2-3 years of treatment, although an exact relationship with the duration of treatment is unknown (see section 4.8). Patients with symptoms and signs consistent with cryptococcal meningitis (e.g. headache accompanied by mental changes such as confusion, hallucinations, and/or personality changes) should undergo prompt diagnostic evaluation. If cryptococcal meningitis is diagnosed, fingolimod should be suspended and appropriate treatment should be initiated. A multidisciplinary consultation (i.e. infectious disease specialist) should be undertaken if re-initiation of fingolimod is warranted.

Progressive multifocal leukoencephalopathy (PML) has been reported under fingolimod treatment since marketing authorisation (see section 4.8). PML is an opportunistic infection caused by John Cunningham virus (JCV), which may be fatal or result in severe disability. Cases of PML have occurred after approximately 2-3 years of monotherapy treatment without previous exposure to natalizumab. Although the estimated risk appears to increase with cumulative exposure over time, an exact relationship with the duration of treatment is unknown. Additional PML cases have occurred in patients who had been treated previously with natalizumab, which has a known association with PML. PML can only occur in the presence of a JCV infection. If JCV testing is undertaken, it should be considered that the influence of lymphopenia on the accuracy of anti-JCV antibody testing has not been studied in fingolimod-treated patients. It should also be noted that a negative anti-JCV antibody test does not preclude the possibility of subsequent JCV infection. Before initiating treatment with fingolimod, a baseline MRI should be available (usually within 3 months) as a reference. MRI findings may be apparent before clinical signs or symptoms. During routine MRI (in accordance with national and local recommendations), physicians should pay attention to PML suggestive lesions. MRI may be considered as part of increased vigilance in patients considered at increased risk of PML. Cases of asymptomatic PML based on MRI findings and positive JCV DNA in the cerebrospinal fluid have been reported in patients treated with fingolimod. If PML is suspected, MRI should be performed immediately for diagnostic purposes and treatment with fingolimod should be suspended until PML has been excluded.

Human papilloma virus (HPV) infection, including papilloma, dysplasia, warts and HPV-related cancer, has been reported under treatment with fingolimod in the post-marketing setting. Due to the immunosuppressive properties of fingolimod, vaccination against HPV should be considered prior to treatment initiation with fingolimod taking into account vaccination recommendations. Cancer screening, including Pap test, is recommended as per standard of care.

Elimination of fingolimod following discontinuation of therapy may take up to two months and vigilance for infection should therefore be continued throughout this period. Patients should be instructed to report symptoms of infection up to 2 months after discontinuation of fingolimod.

Macular oedema

Macular oedema with or without visual symptoms has been reported in 0.5% of patients treated with fingolimod 0.5 mg, occurring predominantly in the first 3-4 months of therapy (see section 4.8). An ophthalmological evaluation is therefore recommended at 3-4 months after treatment initiation. If patients report visual disturbances at any time while on therapy, evaluation of the fundus, including the macula, should be carried out.

Patients with history of uveitis and patients with diabetes mellitus are at increased risk of macular oedema (see section 4.8). Gilenya has not been studied in multiple sclerosis patients with concomitant diabetes mellitus. It is recommended that multiple sclerosis patients with diabetes mellitus or a history of uveitis undergo an ophthalmological evaluation prior to initiating therapy and have follow-up evaluations while receiving therapy.

Continuation of Gilenya in patients with macular oedema has not been evaluated. It is recommended that Gilenya be discontinued if a patient develops macular oedema. A decision on whether or not Gilenya therapy should be re-initiated after resolution of macular oedema needs to take into account the potential benefits and risks for the individual patient.

Liver function

Increased hepatic enzymes, in particular alanine aminotransaminase (ALT) but also gamma glutamyltransferase (GGT) and aspartate transaminase (AST) have been reported in multiple sclerosis patients treated with Gilenya. In clinical trials, elevations 3-fold the upper limit of normal (ULN) or greater in ALT occurred in 8.0% of adult patients treated with fingolimod 0.5 mg compared to 1.9% of placebo patients. Elevations 5-fold the ULN occurred in 1.8% of patients on fingolimod and 0.9% of patients on placebo. In clinical trials, fingolimod was discontinued if the elevation exceeded 5 times the ULN. Recurrence of liver transaminase elevations occurred with rechallenge in some patients, supporting a relationship to fingolimod. In clinical studies, transaminase elevations occurred at any time during treatment although the majority occurred within the first 12 months. Serum transaminase levels returned to normal within approximately 2 months after discontinuation of fingolimod.

Gilenya has not been studied in patients with severe pre-existing hepatic injury (Child-Pugh class C) and should not be used in these patients (see section 4.3).

Due to the immunosuppressive properties of fingolimod, initiation of treatment should be delayed in patients with active viral hepatitis until resolution.

Recent (i.e. within last 6 months) transaminase and bilirubin levels should be available before initiation of treatment with Gilenya. In the absence of clinical symptoms, liver transaminases should be monitored at months 1, 3, 6, 9 and 12 on therapy and periodically thereafter. If liver transaminases rise above 5 times the ULN, more frequent monitoring should be instituted, including serum bilirubin and alkaline phosphatase (ALP) measurement. With repeated confirmation of liver transaminases above 5 times the ULN, treatment with Gilenya should be interrupted and only re-commenced once liver transaminase values have normalised.

Patients who develop symptoms suggestive of hepatic dysfunction, such as unexplained nausea, vomiting, abdominal pain, fatigue, anorexia, or jaundice and/or dark urine, should have liver enzymes checked and Gilenya should be discontinued if significant liver injury is confirmed (for example liver transaminase levels greater than 5-fold the ULN and/or serum bilirubin elevations). Resumption of therapy will be dependent on whether or not another cause of liver injury is determined and on the benefits to patient of resuming therapy versus the risks of recurrence of liver dysfunction.

Although there are no data to establish that patients with pre-existing liver disease are at increased risk of developing elevated liver function tests when taking Gilenya, caution in the use of Gilenya should be exercised in patients with a history of significant liver disease.

Interference with serological testing

Since fingolimod reduces blood lymphocyte counts via re-distribution in secondary lymphoid organs, peripheral blood lymphocyte counts cannot be utilised to evaluate the lymphocyte subset status of a patient treated with Gilenya. Laboratory tests involving the use of circulating mononuclear cells require larger blood volumes due to reduction in the number of circulating lymphocytes.

Blood pressure effects

Patients with hypertension uncontrolled by medication were excluded from participation in premarketing clinical trials and special care is indicated if patients with uncontrolled hypertension are treated with Gilenya.

In MS clinical trials, patients treated with fingolimod 0.5 mg had an average increase of approximately 3 mmHg in systolic pressure, and approximately 1 mmHg in diastolic pressure, first detected approximately 1 month after treatment initiation, and persisting with continued treatment. In the two- year placebo-controlled study, hypertension was reported as an adverse event in 6.5% of patients on fingolimod 0.5 mg and in 3.3% of patients on placebo. Therefore, blood pressure should be regularly monitored during treatment with Gilenya.

Respiratory effects

Minor dose-dependent reductions in values for forced expiratory volume (FEV1) and diffusion capacity for carbon monoxide (DLCO) were observed with Gilenya treatment starting at month 1 and remaining stable thereafter. Gilenya should be used with caution in patients with severe respiratory disease, pulmonary fibrosis and chronic obstructive pulmonary disease (see also section 4.8).

Posterior reversible encephalopathy syndrome

Rare cases of posterior reversible encephalopathy syndrome (PRES) have been reported at the 0.5 mg dose in clinical trials and in the post-marketing setting (see section 4.8). Symptoms reported included sudden onset of severe headache, nausea, vomiting, altered mental status, visual disturbances and seizure. Symptoms of PRES are usually reversible but may evolve into ischaemic stroke or cerebral haemorrhage. Delay in diagnosis and treatment may lead to permanent neurological sequelae. If PRES is suspected, Gilenya should be discontinued.

Prior treatment with immunosuppressive or immunomodulatory therapies

There have been no studies performed to evaluate the efficacy and safety of Gilenya when switching patients from teriflunomide, dimethyl fumarate or alemtuzumab treatment to Gilenya. When switching patients from another disease modifying therapy to Gilenya, the half-life and mode of action of the other therapy must be considered in order to avoid an additive immune effect whilst at the same time minimising the risk of disease reactivation. A CBC is recommended prior to initiating Gilenya to ensure that immune effects of the previous therapy (i.e. cytopenia) have resolved. Gilenya can generally be started immediately after discontinuation of interferon or glatiramer acetate.

For dimethyl fumarate, the washout period should be sufficient for CBC to recover before treatment with Gilenya is started.

Due to the long half-life of natalizumab, elimination usually takes up to 2-3 months following discontinuation. Teriflunomide is also eliminated slowly from the plasma. Without an accelerated elimination procedure, clearance of teriflunomide from plasma can take from several months up to 2 years. An accelerated elimination procedure as defined in the teriflunomide summary of product characteristics is recommended or alternatively washout period should not be shorter than 3.5 months. Caution regarding potential concomitant immune effects is required when switching patients from natalizumab or teriflunomide to Gilenya.

Alemtuzumab has profound and prolonged immunosuppressive effects. As the actual duration of these effects is unknown, initiating treatment with Gilenya after alemtuzumab is not recommended unless the benefits of such treatment clearly outweigh the risks for the individual patient.

A decision to use prolonged concomitant treatment with corticosteroids should be taken after careful consideration.

Co-administration with potent CYP450 inducers

The combination of fingolimod with potent CYP450 inducers should be used with caution. Concomitant administration with St John’s wort is not recommended (see section 4.5).

Malignancies

Cutaneous malignancies

Basal cell carcinoma (BCC) and other cutaneous neoplasms, including malignant melanoma, squamous cell carcinoma, Kaposi’s sarcoma and Merkel cell carcinoma, have been reported in patients receiving Gilenya (see section 4.8). Vigilance for skin lesions is warranted and a medical evaluation of the skin is recommended at initiation, and then every 6 to 12 months taking into consideration clinical judgement. The patient should be referred to a dermatologist in case suspicious lesions are detected.

Since there is a potential risk of malignant skin growths, patients treated with fingolimod should be cautioned against exposure to sunlight without protection. These patients should not receive concomitant phototherapy with UV-B-radiation or PUVA-photochemotherapy.

Lymphomas

There have been cases of lymphoma in clinical studies and the post-marketing setting (see section 4.8). The cases reported were heterogeneous in nature, mainly non-Hodgkin’s lymphoma, including B-cell and T-cell lymphomas. Cases of cutaneous T-cell lymphoma (mycosis fungoides) have been observed. A fatal case of Epstein-Barr virus (EBV) positive B-cell lymphoma has also been observed. If lymphoma is suspected, Gilenya should be discontinued.

Women of childbearing potential

Due to risk to the foetus, fingolimod is contraindicated during pregnancy and in women of childbearing potential not using effective contraception. Before initiation of treatment, women of childbearing potential must be informed of this risk to the foetus, must have a negative pregnancy test and must use effective contraception during treatment and for 2 months after treatment discontinuation (see sections 4.3 and 4.6 and the information contained in the Physician Information Pack).

Tumefactive lesions

Rare cases of tumefactive lesions associated with MS relapse were reported in the post-marketing setting. In case of severe relapses, MRI should be performed to exclude tumefactive lesions. Discontinuation of Gilenya should be considered by the physician on a case-by-case basis taking into account individual benefits and risks.

Return of disease activity (rebound) after fingolimod discontinuation

In the post-marketing setting, severe exacerbation of disease has been observed rarely in some patients stopping fingolimod. This has generally been observed within 12 weeks after stopping fingolimod, but has also been reported up to 24 weeks after fingolimod discontinuation. Caution is therefore indicated when stopping fingolimod therapy. If discontinuation of fingolimod is deemed necessary, the possibility of recurrence of exceptionally high disease activity should be considered and patients should be monitored for relevant signs and symptoms and appropriate treatment initiated as required (see “Stopping therapy” below).

Stopping therapy

If a decision is made to stop treatment with Gilenya a 6 week interval without therapy is needed, based on half-life, to clear fingolimod from the circulation (see section 5.2). Lymphocyte counts progressively return to normal range within 1-2 months of stopping therapy in most patients (see section 5.1) although full recovery can take significantly longer in some patients. Starting other therapies during this interval will result in concomitant exposure to fingolimod. Use of immunosuppressants soon after the discontinuation of Gilenya may lead to an additive effect on the immune system and caution is therefore indicated.

Caution is also indicated when stopping fingolimod therapy due to the risk of a rebound (see “Return of disease activity (rebound) after fingolimod discontinuation” above). If discontinuation of Gilenya is deemed necessary, patients should be monitored during this time for relevant signs of a possible rebound.

Paediatric population

The safety profile in paediatric patients is similar to that in adults and the warnings and precautions for adults therefore also apply to paediatric patients.

In particular, the following should be noted when prescribing Gilenya to paediatric patients:

  • Precautions should be followed at the time of the first dose (see “Bradyarrhythmia” above). The same precautions as for the first dose are recommended when patients are switched from the 0.25 mg to the 0.5 mg daily dose.
  • In the controlled paediatric trial D2311, cases of seizures, anxiety, depressed mood and depression have been reported with a higher incidence in patients treated with fingolimod compared to patients treated with interferon beta-1a. Caution is required in this subgroup population (see “Paediatric population” in section 4.8).
  • Mild isolated bilirubin increases have been noted in paediatric patients on Gilenya.
  • It is recommended that paediatric patients complete all immunisations in accordance with current immunisation guidelines before starting Gilenya therapy (see “Infections” above).
  • There are very limited data available in children between 10–12 years old, less than 40 kg or at Tanner stage <2 (see sections 4.8 and 5.1). Caution is required in these subgroups due to very limited knowledge available from the clinical study.
  • Long-term safety data in the paediatric population are not available.

Interaction with other medicinal products and other forms of interaction

Anti-neoplastic, immunomodulatory or immunosuppressive therapies

Anti-neoplastic, immunomodulatory or immunosuppressive therapies should not be co-administered due to the risk of additive immune system effects (see sections 4.3 and 4.4).

Caution should also be exercised when switching patients from long-acting therapies with immune effects such as natalizumab, teriflunomide or mitoxantrone (see section 4.4). In multiple sclerosis clinical studies the concomitant treatment of relapses with a short course of corticosteroids was not associated with an increased rate of infection.

Vaccination

During and for up to two months after treatment with Gilenya vaccination may be less effective. The use of live attenuated vaccines may carry a risk of infections and should therefore be avoided (see sections 4.4 and 4.8).

Bradycardia-inducing substances

Fingolimod has been studied in combination with atenolol and diltiazem. When fingolimod was used with atenolol in an interaction study in healthy volunteers, there was an additional 15% reduction of heart rate at fingolimod treatment initiation, an effect not seen with diltiazem. Treatment with Gilenya should not be initiated in patients receiving beta blockers, or other substances which may decrease heart rate, such as class Ia and III antiarrhythmics, calcium channel blockers (such as verapamil or diltiazem), ivabradine, digoxin, anticholinesteratic agents or pilocarpine because of the potential additive effects on heart rate (see sections 4.4 and 4.8). If treatment with Gilenya is considered in such patients, advice from a cardiologist should be sought regarding the switch to non heart-rate lowering medicinal products or appropriate monitoring for treatment initiation, at least overnight monitoring is recommended, if the heart-rate-lowering medication cannot be stopped.

Pharmacokinetic interactions of other substances on fingolimod

Fingolimod is metabolised mainly by CYP4F2. Other enzymes like CYP3A4 may also contribute to its metabolism, notably in the case of strong induction of CYP3A4. Potent inhibitors of transporter proteins are not expected to influence fingolimod disposition. Co-administration of fingolimod with ketoconazole resulted in a 1.7-fold increase in fingolimod and fingolimod phosphate exposure (AUC) by inhibition of CYP4F2. Caution should be exercised with substances that may inhibit CYP3A4 (protease inhibitors, azole antifungals, some macrolides such as clarithromycin or telithromycin).

Co-administration of carbamazepine 600 mg twice daily at steady-state and a single dose of fingolimod 2 mg reduced the AUC of fingolimod and its metabolite by approximately 40%. Other strong CYP3A4 enzyme inducers, for example rifampicin, phenobarbital, phenytoin, efavirenz and St. John’s Wort, may reduce the AUC of fingolimod and its metabolite at least to this extent. As this could potentially impair the efficacy, their co-administration should be used with caution. Concomitant administration with St. John’s Wort is however not recommended (see section 4.4).

Pharmacokinetic interactions of fingolimod on other substances

Fingolimod is unlikely to interact with substances mainly cleared by the CYP450 enzymes or by substrates of the main transporter proteins.

Co-administration of fingolimod with ciclosporin did not elicit any change in the ciclosporin or fingolimod exposure. Therefore, fingolimod is not expected to alter the pharmacokinetics of medicinal products that are CYP3A4 substrates.

Co-administration of fingolimod with oral contraceptives (ethinylestradiol and levonorgestrel) did not elicit any change in oral contraceptive exposure. No interaction studies have been performed with oral contraceptives containing other progestagens, however an effect of fingolimod on their exposure is not expected.

Fertility, pregnancy and lactation

Women of childbearing potential/Contraception in females

Fingolimod is contraindicated in women of childbearing potential not using effective contraception (see section 4.3). Therefore, before initiation of treatment in women of childbearing potential, a negative pregnancy test result must be available and counselling should be provided regarding the serious risk to the foetus. Women of childbearing potential must use effective contraception during treatment and for 2 months after discontinuation of Gilenya, since fingolimod takes approximately 2 months to eliminate from the body after treatment discontinuation (see section 4.4).

Specific measures are also included in the Physician Information Pack. These measures must be implemented before fingolimod is prescribed to female patients and during treatment.

When stopping fingolimod therapy for planning a pregnancy the possible return of disease activity should be considered (see section 4.4).

Pregnancy

Based on human experience, post-marketing data suggest that use of fingolimod is associated with a 2-fold increased risk of major congenital malformations when administered during pregnancy compared with the rate observed in the general population (2-3%; EUROCAT).

The following major malformations were most frequently reported:

  • Congenital heart disease such as atrial and ventricular septal defects, tetralogy of Fallot
  • Renal abnormalities
  • Musculoskeletal abnormalities

There are no data on the effects of fingolimod on labour and delivery.

Animal studies have shown reproductive toxicity including foetal loss and organ defects, notably persistent truncus arteriosus and ventricular septal defect (see section 5.3). Furthermore, the receptor affected by fingolimod (sphingosine 1-phosphate receptor) is known to be involved in vascular formation during embryogenesis.

Consequently, fingolimod is contraindicated during pregnancy (see section 4.3). Fingolimod should be stopped 2 months before planning a pregnancy (see section 4.4). If a woman becomes pregnant during treatment, fingolimod must be discontinued. Medical advice should be given regarding the risk of harmful effects to the foetus associated with treatment and ultrasonography examinations should be performed.

Breast-feeding

Fingolimod is excreted in milk of treated animals during lactation (see section 5.3). Due to the potential for serious adverse reactions to fingolimod in nursing infants, women receiving Gilenya should not breastfeed.

Fertility

Data from preclinical studies do not suggest that fingolimod would be associated with an increased risk of reduced fertility (see section 5.3).

Effects on ability to drive and use machines

Gilenya has no or negligible influence on the ability to drive and use machines.

However, dizziness or drowsiness may occasionally occur when initiating therapy with Gilenya. On initiation of Gilenya treatment it is recommended that patients be observed for a period of 6 hours (see section 4.4, Bradyarrhythmia).

Undesirable effects

Summary of the safety profile

Adverse reactions reported with Gilenya 0.5 mg in Studies D2301 (FREEDOMS) and D2309 (FREEDOMS II) are shown below. Adverse reactions derived from post-marketing experience with Gilenya via spontaneous case reports or literature cases are also reported. Frequencies were defined using the following convention: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000); not known (cannot be estimated from the available data).

Tabulated list of adverse reactions:

Infections and infestations

Very common: Influenza, Sinusitis

Common: Herpes viral infections, Bronchitis, Tinea versicolor

Uncommon: Pneumonia

Not known: Progressive multifocal leukoencephalopathy (PML), Cryptococcal infections

Neoplasms benign, malignant and unspecified (incl cysts and polyps)

Common: Basal cell carcinoma

Uncommon: Malignant melanoma****

Rare: Lymphoma***, Squamous cell carcinoma****

Very rare: Kaposi’s sarcoma****

Not known: Merkel cell carcinoma***

Blood and lymphatic system disorders

Common: Lymphopenia Leucopenia

Uncommon: Thrombocytopenia

Not known: Autoimmune haemolytic anaemia***, Peripheral oedema***

Immune system disorders

Not known: Hypersensitivity reactions, including rash, urticaria and angioedema upon treatment initiation***

Psychiatric disorders

Common: Depression

Uncommon: Depressed mood

Nervous system disorders

Very common: Headache

Common: Dizziness, Migraine

Uncommon: Seizure

Rare: Posterior reversible encephalopathy syndrome (PRES)*

Not known: Severe exacerbation of disease after Gilenya discontinuation***

Eye disorders

Common: Vision blurred

Uncommon: Macular oedema

Cardiac disorders

Common: Bradycardia, Atrioventricular block

Very rare: T-wave inversion***

Vascular disorders

Common: Hypertension

Respiratory, thoracic and mediastinal disorders

Very common: Cough

Common: Dyspnoea

Gastrointestinal disorders

Very common: Diarrhoea

Uncommon: Nausea***

Skin and subcutaneous tissue disorders

Common: Eczema, Alopecia, Pruritus

Musculoskeletal and connective tissue disorders

Very common: Back pain

Common: Myalgia, Arthralgia

General disorders and administration site conditions

Common: Asthenia

Investigations

Very common: Hepatic enzyme increased (increased ALT, Gamma glutamyltransferase, Aspartate transaminase)

Common: Weight decreased***, Blood triglycerides increased

Uncommon: Neutrophil count decreased

* Not reported in Studies FREEDOMS, FREEDOMS II and TRANSFORMS. The frequency category was based on an estimated exposure of approximately 10,000 patients to fingolimod in all clinical trials.
** PML and cryptococcal infections (including cases of cryptococcal meningitis) have been reported in the post-marketing setting (see section 4.4).
*** Adverse drug reactions from spontaneous reports and literature
**** The frequency category and risk assessment were based on an estimated exposure of more than 24,000 patients to fingolimod 0.5 mg in all clinical trials.

Description of selected adverse reactions

Infections

In multiple sclerosis clinical studies the overall rate of infections (65.1%) at the 0.5 mg dose was similar to placebo. However, lower respiratory tract infections, primarily bronchitis and to a lesser extent herpes infection and pneumonia were more common in Gilenya-treated patients.

Some cases of disseminated herpes infection, including fatal cases, have been reported even at the 0.5 mg dose.

In the post-marketing setting, cases of infections with opportunistic pathogens, such as viral (e.g. varicella zoster virus [VZV], John Cunningham virus [JCV] causing Progressive Multifocal Leukoencephalopathy, herpes simplex virus [HSV]), fungal (e.g. cryptococci including cryptococcal meningitis) or bacterial (e.g. atypical mycobacterium), have been reported, some of which have been fatal (see section 4.4).

Human papilloma virus (HPV) infection, including papilloma, dysplasia, warts and HPV-related cancer, has been reported under treatment with fingolimod in the post-marketing setting. Due to the immunosuppressive properties of fingolimod, vaccination against HPV should be considered prior to treatment initiation with fingolimod taking into account vaccination recommendations. Cancer screening, including Pap test, is recommended as per standard of care.

Macular oedema

In multiple sclerosis clinical studies macular oedema occurred in 0.5% of patients treated with the recommended dose of 0.5 mg and 1.1% of patients treated with the higher dose of 1.25 mg. The majority of cases occurred within the first 3-4 months of therapy. Some patients presented with blurred vision or decreased visual acuity, but others were asymptomatic and diagnosed on routine ophthalmological examination. The macular oedema generally improved or resolved spontaneously after discontinuation of Gilenya. The risk of recurrence after re-challenge has not been evaluated.

Macular oedema incidence is increased in multiple sclerosis patients with a history of uveitis (17% with a history of uveitis vs. 0.6% without a history of uveitis). Gilenya has not been studied in multiple sclerosis patients with diabetes mellitus, a disease which is associated with an increased risk for macular oedema (see section 4.4). In renal transplant clinical studies in which patients with diabetes mellitus were included, therapy with fingolimod 2.5 mg and 5 mg resulted in a 2-fold increase in the incidence of macular oedema.

Bradyarrhythmia

Initiation of Gilenya treatment results in a transient decrease in heart rate and may also be associated with atrioventricular conduction delays. In multiple sclerosis clinical studies the maximal decline in heart rate was seen within 6 hours after treatment initiation, with declines in mean heart rate of 12-13 beats per minute for Gilenya 0.5 mg. Heart rate below 40 beats per minute in adults, and below 50 beats per minute in paediatric patients, was rarely observed in patients on Gilenya 0.5 mg. The average heart rate returned towards baseline within 1 month of chronic treatment. Bradycardia was generally asymptomatic but some patients experienced mild to moderate symptoms, including hypotension, dizziness, fatigue and/or palpitations, which resolved within the first 24 hours after treatment initiation (see also sections 4.4 and 5.1).

In multiple sclerosis clinical studies first-degree atrioventricular block (prolonged PR interval on ECG) was detected after treatment initiation in adult and paediatric patients. In adult clinical trials it occurred in 4.7% of patients on fingolimod 0.5 mg, in 2.8% of patients on intramuscular interferon beta-1a, and in 1.6% of patients on placebo. Second-degree atrioventricular block was detected in less than 0.2% adult patients on Gilenya 0.5 mg. In the post-marketing setting, isolated reports of transient, spontaneously resolving complete AV block have been observed during the six hour monitoring period following the first dose of Gilenya. The patients recovered spontaneously. The conduction abnormalities observed both in clinical trials and post-marketing were typically transient, asymptomatic and resolved within the first 24 hours after treatment initiation. Although most patients did not require medical intervention, one patient on Gilenya 0.5 mg received isoprenaline for asymptomatic second-degree Mobitz I atrioventricular block.

In the post-marketing setting, isolated delayed onset events, including transient asystole and unexplained death, have occurred within 24 hours of the first dose. These cases have been confounded by concomitant medicinal products and/or pre-existing disease. The relationship of such events to Gilenya is uncertain.

Blood pressure

In multiple sclerosis clinical studies Gilenya 0.5 mg was associated with an average increase of approximately 3 mmHg in systolic pressure and approximately 1 mmHg in diastolic pressure, manifesting approximately 1 month after treatment initiation. This increase persisted with continued treatment. Hypertension was reported in 6.5% of patients on fingolimod 0.5 mg and in 3.3% of patients on placebo. In the post-marketing setting, cases of hypertension have been reported within the first month of treatment initiation and on the first day of treatment that may require treatment with antihypertensive agents or discontinuation of Gilenya (see also section 4.4, Blood pressure effects).

Liver function

Increased hepatic enzymes have been reported in adult and paediatric multiple sclerosis patients treated with Gilenya. In clinical studies 8.0% and 1.8% of adult patients treated with Gilenya 0.5 mg experienced an asymptomatic elevation in serum levels of ALT of ≥3x ULN (upper limit of normal) and ≥5x ULN, respectively. Recurrence of liver transaminase elevations has occurred upon re-challenge in some patients, supporting a relationship to the medicinal product. In clinical studies, transaminase elevations occurred at any time during treatment although the majority occurred within the first 12 months. ALT levels returned to normal within approximately 2 months after discontinuation of Gilenya. In a small number of patients (N=10 on 1.25 mg, N=2 on 0.5 mg) who experienced ALT elevations ≥5x ULN and who continued on Gilenya therapy, the ALT levels returned to normal within approximately 5 months (see also section 4.4, Liver function).

Nervous system disorders

In clinical studies, rare events involving the nervous system occurred in patients treated with fingolimod at higher doses (1.25 or 5.0 mg) including ischaemic and haemorrhagic strokes and neurological atypical disorders, such as acute disseminated encephalomyelitis (ADEM)-like events.

Cases of seizures, including status epilepticus, have been reported with the use of Gilenya in clinical studies and in the post-marketing setting.

Vascular disorders

Rare cases of peripheral arterial occlusive disease occurred in patients treated with fingolimod at higher doses (1.25 mg).

Respiratory system

Minor dose-dependent reductions in values for forced expiratory volume (FEV1) and diffusion capacity for carbon monoxide (DLCO) were observed with Gilenya treatment starting at month 1 and remaining stable thereafter. At month 24, the reduction from baseline values in percentage of predicted FEV 1 was 2.7% for fingolimod 0.5 mg and 1.2% for placebo, a difference that resolved after treatment discontinuation. For DLCO the reductions at month 24 were 3.3% for fingolimod 0.5 mg and 2.7% for placebo.

Lymphomas

There have been cases of lymphoma of different varieties, in both clinical studies and the post-marketing setting, including a fatal case of Epstein-Barr virus (EBV) positive B-cell lymphoma. The incidence of non-Hodgkin’s lymphoma (B-cell and T-cell) cases was higher in clinical trials than expected in the general population. Some T-cell lymphoma cases were also reported in the post-marketing setting, including cases of cutaneous T-cell lymphoma (mycosis fungoides).

Haemophagocytic syndrome

Very rare cases of haemophagocytic syndrome (HPS) with fatal outcome have been reported in patients treated with fingolimod in the context of an infection. HPS is a rare condition that has been described in association with infections, immunosuppression and a variety of autoimmune diseases.

Paediatric population

In the controlled paediatric trial D2311 (see section 5.1), the safety profile in paediatric patients (10 to below 18 years of age) receiving fingolimod 0.25 mg or 0.5 mg daily was overall similar to that seen in adult patients. There were, nevertheless, more neurological and psychiatric disorders observed in the study. Caution is needed in this subgroup due to very limited knowledge available from the clinical study.

In the paediatric study, cases of seizures were reported in 5.6% of fingolimod-treated patients and 0.9% of interferon beta-1a-treated patients.

Depression and anxiety are known to occur with increased frequency in the multiple sclerosis population. Depression and anxiety have also been reported in paediatric patients treated with fingolimod.

Mild isolated bilirubin increases have been noted in paediatric patients on fingolimod.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

Incompatibilities

Not applicable.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.