MAXAQUIN F. C. Tablets Ref.[8876] Active ingredients: Lomefloxacin

Source: European Medicines Agency (EU)  Revision Year: 2005  Publisher: Pfizer Inc. - G.D. Searle LLC

Contraindications

Maxaquin (lomefloxacin HCl) is contraindicated in persons with a history of hypersensitivity to lomefloxacin or any member of the quinolone group of antimicrobial agents.

Special warnings and precautions for use

Warnings

MODERATE TO SEVERE PHOTOTOXIC REACTIONS HAVE OCCURRED IN PATIENTS EXPOSED TO DIRECT OR INDIRECT SUNLIGHT OR TO ARTIFICIAL ULTRAVIOLET LIGHT (eg, sunlamps) DURING OR FOLLOWING TREATMENT WITH LOMEFLOXACIN. THESE REACTIONS HAVE ALSO OCCURRED IN PATIENTS EXPOSED TO SHADED OR DIFFUSE LIGHT, INCLUDING EXPOSURE THROUGH GLASS. PATIENTS SHOULD BE ADVISED TO DISCONTINUE LOMEFLOXACIN THERAPY AT THE FIRST SIGNS OR SYMPTOMS OF A PHOTOTOXICITY REACTION SUCH AS A SENSATION OF SKIN BURNING, REDNESS, SWELLING, BLISTERS, RASH, ITCHING, OR DERMATITIS.

These phototoxic reactions have occurred with and without the use of sunscreens or sunblocks. Single doses of lomefloxacin have been associated with these types of reactions. In a few cases, recovery was prolonged for several weeks. As with some other types of phototoxicity, there is the potential for exacerbation of the reaction on re-exposure to sunlight or artificial ultraviolet light prior to complete recovery from the reaction. In rare cases, reactions have recurred up to several weeks after stopping lomefloxacin therapy.

EXPOSURE TO DIRECT OR INDIRECT SUNLIGHT (EVEN WHEN USING SUNSCREENS OR SUNBLOCKS) SHOULD BE AVOIDED WHILE TAKING LOMEFLOXACIN AND FOR SEVERAL DAYS FOLLOWING THERAPY. LOMEFLOXACIN THERAPY SHOULD BE DISCONTINUED IMMEDIATELY AT THE FIRST SIGNS OR SYMPTOMS OF PHOTOTOXICITY. RISK OF PHOTOTOXICITY MAY BE REDUCED BY TAKING LOMEFLOXACIN IN THE EVENING (See Dosage and Administration.)

THE SAFETY AND EFFICACY OF LOMEFLOXACIN IN PEDIATRIC PATIENTS AND ADOLESCENTS (UNDER THE AGE OF 18 YEARS), PREGNANT WOMEN, AND LACTATING WOMEN HAVE NOT BEEN ESTABLISHED. (See PRECAUTIONS-Pediatric Use, Pregnancy and Nursing Mothers subsections.) The oral administration of multiple doses of lomefloxacin to juvenile dogs at 0.3 times and to rats at 5.4 times the recommended adult human dose based on mg/m² (0.6 and 34 times the recommended adult human dose based on mg/kg, respectively) caused arthropathy and lameness. Histopathologic examination of the weight-bearing joints of these animals revealed permanent lesions of the cartilage. Other quinolones also produce erosions of cartilage of weight-bearing joints and other signs of arthropathy in juvenile animals of various species. (See Animal Pharmacology.)

Convulsions have been reported in patients receiving lomefloxacin. Whether the convulsions were directly related to lomefloxacin administration has not yet been established. However, convulsions, increased intracranial pressure, and toxic psychoses have been reported in patients receiving other quinolones. Nevertheless, lomefloxacin has been associated with a possible increased risk of seizures compared to other quinolones. Some of these may occur with a relative absence of predisposing factors. Quinolones may also cause central nervous system (CNS) stimulation, which may lead to tremors, restlessness, lightheadedness, confusion, and hallucinations. If any of these reactions occurs in patients receiving lomefloxacin, the drug should be discontinued and appropriate measures instituted. However, until more information becomes available, lomefloxacin, like all other quinolones, should be used with caution in patients with known or suspected CNS disorders, such as severe cerebral arteriosclerosis, epilepsy, or other factors that predispose to seizures. (See Adverse Reactions.) Psychiatric disturbances, agitation, anxiety, and sleep disorders may be more common with lomefloxacin than other products in the quinolone class.

The safety and efficacy of lomefloxacin in the treatment of acute bacterial exacerbation of chronic bronchitis due to S pneumoniae have not been demonstrated. This product should not be used empirically in the treatment of acute bacterial exacerbation of chronic bronchitis when it is probable that S pneumoniae is a causative pathogen.

In clinical trials of complicated UTIs due to P aeruginosa, 12 of 16 patients had the microorganism eradicated from the urine after therapy with lomefloxacin. No patients had concomitant bacteremia. Serum levels of lomefloxacin do not reliably exceed the MIC of Pseudomonas isolates. THE SAFETY AND EFFICACY OF LOMEFLOXACIN IN TREATING PATIENTS WITH PSEUDOMONAS BACTEREMIA HAVE NOT BEEN ESTABLISHED.

Serious and occasionally fatal hypersensitivity (anaphylactoid or anaphylactic) reactions, some following the first dose, have been reported in patients receiving quinolone therapy. Some reactions were accompanied by cardiovascular collapse, loss of consciousness, tingling, pharyngeal or facial edema, dyspnea, urticaria, or itching. Only a few of these patients had a history of previous hypersensitivity reactions. Serious hypersensitivity reactions have also been reported following treatment with lomefloxacin. If an allergic reaction to lomefloxacin occurs, discontinue the drug. Serious acute hypersensitivity reactions may require immediate emergency treatment with epinephrine. Oxygen, intravenous fluids, antihistamines, corticosteroids, pressor amines, and airway management, including intubation, should be administered as indicated.

Pseudomembranous colitis has been reported with nearly all antibacterial agents, including lomefloxacin, and may range from mild to life-threatening in severity. Therefore, it is important to consider this diagnosis in patients who present with diarrhea subsequent to the administration of antibacterial agents. Treatment with antimicrobial agents alters the normal flora of the colon and may permit overgrowth of clostridia. Studies indicate that a toxin produced by Clostridium difficile is a primary cause of “antibiotic-associated colitis.” After the diagnosis of pseudomembranous colitis has been established, therapeutic measures should be initiated. Mild cases of pseudomembranous colitis usually respond to discontinuation of drug alone. In moderate to severe cases, consideration should be given to management with fluids and electrolytes, protein supplementation, and treatment with an antibacterial drug clinically effective against C difficile colitis.

QT interval prolongation/torsades de pointes: Rare cases of torsades de pointes have been spontaneously reported during post-marketing surveillance in patients receiving quinolones, including lomefloxacin. These rare cases were associated with one or more of the following factors: age over 60, female gender, underlying cardiac disease, and/or use of multiple medications. Lomefloxacin should be avoided in patients with known prolongation of the QT interval, patients with uncorrected hypokalemia, and patients receiving class IA (quinidine, procainamide), or class III (amiodarone, sotalol) antiarrhythmic agents.

Peripheral neuropathy: Rare cases of sensory or sensorimotor axonal polyneuropathy affecting small and/or large axons resulting in paresthesias, hypoesthesias, dysesthesias and weakness have been reported in patients receiving quinolones, including lomefloxacin. Lomefloxacin should be discontinued if the patient experiences symptoms of neuropathy including pain, burning, tingling, numbness, and /or weakness, or is found to have deficits in light touch, pain, temperature, position sense, vibratory sensation, and/or motor strength in order to prevent the development of an irreversible condition.

Tendon Effects: Ruptures of the shoulder, hand, Achilles tendon or other tendons that require surgical repair or resulted in prolonged disability have been reported in patients receiving quinolones, including lomefloxacin. Post-marketing surveillance reports indicate that this risk may be increased in patients receiving concomitant corticosteroids, especially the elderly. Lomefloxacin should be discontinued if the patient experiences pain, inflammation, or rupture of a tendon. Patients should rest and refrain from exercise until diagnosis of tendonitis or tendon rupture had been excluded. Tendon rupture can occur during or after therapy with quinolones, including lomefloxacin.

Precautions

General

Alteration of the dosage regimen is recommended for patients with impairment of renal function (ClCr <40 mL/min/1.73 m²) (See Dosage and Administration.) Prescribing Maxaquin in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Information for patients

Patients should be advised

  • that peripheral neuropathies have been associated with lomefloxacin use. If symptoms of peripheral neuropathy including pain, burning, tingling, numbness and/or weakness develop, they should discontinue treatment and contact their physicians.
  • to avoid to the maximum extent possible direct or indirect sunlight (including exposure through glass and exposure through sunscreens and sunblocks) and artificial ultraviolet light (eg, sunlamps) during treatment with lomefloxacin and for several days after therapy;
  • that they may reduce the risk of developing phototoxicity from sunlight by taking the daily dose of lomefloxacin at least 12 hours before exposure to the sun (eg, in the evening);
  • to discontinue lomefloxacin therapy at the first signs or symptoms of phototoxicity reaction such as a sensation of skin burning, redness, swelling, blisters, rash, itching, or dermatitis;
  • that a patient who has experienced a phototoxic reaction should avoid reexposure to sunlight and artificial ultraviolet light until he has completely recovered from the reaction. In rare cases, reactions have recurred up to several weeks after stopping lomefloxacin therapy.
  • to drink fluids liberally;
  • that lomefloxacin can be taken without regard to meals;
  • that mineral supplements or vitamins with iron or minerals should not be taken within the 2-hour period before or after taking lomefloxacin (see Drug Interactions);
  • that sucralfate and antacids containing magnesium or aluminum, or Videx (didanosine), chewable/buffered tablets or the pediatric powder for oral solution should not be taken within 4 hours before or 2 hours after taking lomefloxacin. (See PRECAUTIONS-Drug Interactions.)
  • that lomefloxacin can cause dizziness and lightheadedness and, therefore, patients should know how they react to lomefloxacin before they operate an automobile or machinery or engage in activities requiring mental alertness and coordination;
  • to discontinue treatment and inform their physician if they experience pain, inflammation, or rupture of a tendon, and to rest and refrain from exercise until the diagnosis of tendinitis or tendon rupture has been confidently excluded;
  • that lomefloxacin may be associated with hypersensitivity reactions, even following the first dose, and to discontinue the drug at the first sign of a skin rash or other allergic reaction;
  • that convulsions have been reported in patients taking quinolones, including lomefloxacin, and to notify their physician before taking this drug if there is a history of this condition.
  • that antibacterial drugs including Maxaquin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Maxaquin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Maxaquin or other antibacterial drugs in the future.

Interaction with other medicinal products and other forms of interaction

Drug interactions

Theophylline: In three pharmacokinetic studies including 46 normal, healthy Maxaquin lomefloxacin hydrochloride tablets subjects, theophylline clearance and concentration were not significantly altered by the addition of lomefloxacin. In clinical studies where patients were on chronic theophylline therapy, lomefloxacin had no measurable effect on the mean distribution of theophylline concentrations or the mean estimates of theophylline clearance. Though individual theophylline levels fluctuated, there were no clinically significant symptoms of drug interaction.

Antacids and sucralfate: Sucralfate and antacids containing magnesium or aluminum, as well as formulations containing divalent and trivalent cations such as Videx (didanosine), chewable/buffered tablets or the pediatric powder for oral solution can form chelation complexes with lomefloxacin and interfere with its bioavailability. Sucralfate administered 2 hours before lomefloxacin resulted in a slower absorption (mean Cmax decreased by 30% and mean Tmax increased by 1 hour) and a lesser extent of absorption (mean AUC decreased by approximately 25%). Magnesium- and aluminum-containing antacids, administered concomitantly with lomefloxacin, significantly decreased the bioavailability (48%) of lomefloxacin. Separating the doses of antacid and lomefloxacin minimizes this decrease in bioavailability; therefore, administration of these agents should precede lomefloxacin dosing by 4 hours or follow lomefloxacin dosing by at least 2 hours.

Caffeine: Two hundred mg of caffeine (equivalent to 1 to 3 cups of American coffee) was administered to 16 normal, healthy volunteers who had achieved steady-state blood concentrations of lomefloxacin after being dosed at 400 mg qd. This did not result in any statistically or clinically relevant changes in the pharmacokinetic parameters of either caffeine or its major metabolite, paraxanthine. No data are available on potential interactions in individuals who consume greater than 200 mg of caffeine per day or in those, such as the geriatric population, who are generally believed to be more susceptible to the development of drug-induced CNS-related adverse effects. Other quinolones have demonstrated moderate to marked interference with the metabolism of caffeine, resulting in a reduced clearance, a prolongation of plasma half-life, and an increase in symptoms that accompany high levels of caffeine.

Cimetidine: Cimetidine has been demonstrated to interfere with the elimination of other quinolones. This interference has resulted in significant increases in half-life and AUC. The interaction between lomefloxacin and cimetidine has not been studied.

Cyclosporine: Elevated serum levels of cyclosporine have been reported with concomitant use of cyclosporine with other members of the quinolone class. Interaction between lomefloxacin and cyclosporine has not been studied.

Omeprazole: No clinically significant changes in lomefloxacin pharmacokinetics (AUC, Cmax, or Tmax) were observed when a single dose of lomefloxacin 400 mg was given after multiple doses of omeprazole (20 mg qd) in 13 healthy volunteers. Changes in omeprazole pharmacokinetics were not studied.

Phenytoin: No significant differences were observed in mean phenytoin AUC, Cmax, Cmin or Tmax (although Cmax increased by 11%) when extended phenytoin sodium capsules (100 mg tid) were coadministered with lomefloxacin (400 mg qd) for five days in 15 healthy males. Lomefloxacin is unlikely to have a significant effect on phenytoin metabolism.

Probenecid: Probenecid slows the renal elimination of lomefloxacin. An increase of 63% in the mean AUC and increases of 50% and 4%, respectively, in the mean Tmax and mean Cmax were noted in 1 study of 6 individuals.

Terfenadine: No clinically significant changes occurred in heart rate or corrected QT intervals, or in terfenadine metabolite or lomefloxacin pharmacokinetics, during concurrent administration of lomefloxacin and terfenadine at steady-state in 28 healthy males.

Warfarin: Quinolones may enhance the effects of the oral anticoagulant, warfarin, or its derivatives. When these products are administered concomitantly, prothrombin or other suitable coagulation tests should be monitored closely. However, no clinically or statistically significant differences in prothrombin time ratio or warfarin enantiomer pharmacokinetics were observed in a small study of 7 healthy males who received both warfarin and lomefloxacin under steady-state conditions.

Pregnancy and lactation

Pregnancy

Teratogenic effects. Pregnancy Category C.

Reproductive function studies have been performed in rats at doses up to 8 times the recommended human dose based on mg/m² (34 times the recommended human dose based on mg/kg), and no impaired fertility or harm to the fetus was reported due to lomefloxacin. Increased incidence of fetal loss in monkeys has been observed at approximately 3 to 6 times the recommended human dose based on mg/m² (6 to 12 times the recommended human dose based on mg/kg). No teratogenicity has been observed in rats and monkeys at up to 16 times the recommended human dose exposure. In the rabbit, maternal toxicity and associated fetotoxicity, decreased placental weight, and variations of the coccygeal vertebrae occurred at doses 2 times the recommended human exposure based on mg/m². There are, however, no adequate and well-controlled studies in pregnant women. Lomefloxacin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing mothers

It is not known whether lomefloxacin is excreted in human milk. However, it is known that other drugs of this class are excreted in human milk and that lomefloxacin is excreted in the milk of lactating rats. Because of the potential for serious adverse reactions from lomefloxacin in nursing infants, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Undesirable effects

In clinical trials, most of the adverse events reported were mild to moderate in severity and transient in nature. During these clinical investigations, 5,623 patients received Maxaquin. In 2.2% of the patients, lomefloxacin was discontinued because of adverse events, primarily involving the gastrointestinal system (0.7%), skin (0.7%), or CNS (0.5%).

Adverse clinical events

The events with the highest incidence (≥ 1%) in patients, regardless of relationship to drug, were headache (3.6%), nausea (3.5%), photosensitivity (2.3%) [see Warnings], dizziness (2.1%), diarrhea (1.4%), and abdominal pain (1.2%).

Additional clinical events reported in <1% of patients treated with Maxaquin, regardless of relationship to drug, are listed below:

Autonomic: increased sweating, dry mouth, flushing, syncope.

Body as a whole: fatigue, back pain, malaise, asthenia, chest pain, face edema, hot flashes, influenza-like symptoms, edema, chills, allergic reaction, anaphylactoid reaction, decreased heat tolerance.

Cardiovascular: tachycardia, hypertension, hypotension, myocardial infarction, angina pectoris, cardiac failure, bradycardia, arrhythmia, phlebitis, pulmonary embolism, extrasystoles, cerebrovascular disorder, cyanosis, cardiomyopathy.

Central and peripheral nervous system: tremor, vertigo, paresthesias, twitching, hypertonia, convulsions, hyperkinesia, coma.

Gastrointestinal: dyspepsia, vomiting, flatulence, constipation, gastrointestinal bleeding, dysphagia, stomatitis, tongue discoloration, gastrointestinal inflammation.

Hearing: earache, tinnitus.

Hematologic: purpura, lymphadenopathy, thrombocythemia, anemia, thrombocytopenia, increased fibrinolysis.

Hepatic: abnormal liver function.

Metabolic: thirst, hyperglycemia, hypoglycemia, gout.

*Musculoskeletal: arthralgia, myalgia, leg cramps.

Ophthalmologic:* abnormal vision, conjunctivitis, photophobia, eye pain, abnormal lacrimation.

Psychiatric: insomnia, nervousness, somnolence, anorexia, depression, confusion, agitation, increased appetite, depersonalization, paranoid reaction, anxiety, paroniria, abnormal thinking, concentration impairment.

Reproductive system: Female: vaginal moniliasis, vaginitis, leukorrhea, menstrual disorder, perineal pain, intermenstrual bleeding. Male: epididymitis, orchitis.

Resistance mechanism: viral infection, moniliasis, fungal infection.

Respiratory: respiratory infection, rhinitis, pharyngitis, dyspnea, cough, epistaxis, bronchospasm, respiratory disorder, increased sputum, stridor, respiratory depression.

Skin/Allergic: pruritus, rash, urticaria, skin exfoliation, bullous eruption, eczema, skin disorder, acne, skin discoloration, skin ulceration, angioedema. (See also Body as a whole.)

Special senses: taste perversion.

Urinary: hematuria, micturition disorder, dysuria, strangury, anuria.

Adverse laboratory events

Changes in laboratory parameters, listed as adverse events, without regard to drug relationship include:

Hematologic: monocytosis (0.2%), eosinophilia (0.1%), leukopenia (0.1%), leukocytosis (0.1%).

Renal: elevated BUN (0.1%), decreased potassium (0.1%), increased creatinine (0.1%).

Hepatic: elevations of ALT (SGPT) (0.4%), AST (SGOT) (0.3%), bilirubin (0.1%), alkaline phosphatase (0.1%).

Additional laboratory changes occurring in <0.1% in the clinical studies included: elevation of serum gamma glutamyl transferase, decrease in total protein or albumin, prolongation of prothrombin time, anemia, decrease in hemoglobin, thrombocythemia, thrombocytopenia, abnormalities of urine specific gravity or serum electrolytes, increased albumin, elevated ESR, albuminuria, macrocytosis.

Post-Marketing Adverse Events

Post-marketing adverse events

Adverse events reported from worldwide marketing experience with lomefloxacin are: anaphylaxis, cardiopulmonary arrest, laryngeal or pulmonary edema, ataxia, cerebral thrombosis, hallucinations, painful oral mucosa, pseudomembranous colitis, hemolytic anemia, hepatitis, tendinitis, diplopia, photophobia, phobia, exfoliative dermatitis, hyperpigmentation, Stevens-Johnson syndrome, toxic epidermal necrolysis, dysgeusia, interstitial nephritis, polyuria, renal failure, urinary retention, and vasculitis.

Quinolone-class adverse events

Additional quinolone-class adverse events include: Peripheral neuropathy, torsades de pointes, erythema nodosum, hepatic necrosis, possible exacerbation of myasthenia gravis, dysphasia, nystagmus, intestinal perforation, manic reaction, renal calculi, acidosis and hiccough. Laboratory adverse events include: agranulocytosis, elevation of serum triglycerides, elevation of serum cholesterol, elevation of blood glucose, elevation of serum potassium, albuminuria, candiduria, and crystalluria.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.