OMEPRAZOLE Powder for solution for infusion Ref.[7024] Active ingredients: Omeprazole

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2017  Publisher: Sandoz Ltd, Frimley Business Park, Frimley, Camberley, Surrey, GU16 7SR, United Kingdom

Pharmacodynamic properties

Pharmacotherapeutic group: Drugs for acid related disorders, Proton pump inhibitors
ATC code: A02BC01

Mechanism of action

Omeprazole, a racemic mixture of two enantiomers reduces gastric acid secretion through a highly targeted mechanism of action. It is a specific inhibitor of the acid pump in the parietal cell. It is rapidly acting and provides control through reversible inhibition of gastric acid secretion with once-daily dosing.

Omeprazole is a weak base and is concentrated and converted to the active form in the highly acidic environment of the intracellular canaliculi within the parietal cell, where it inhibits the enzyme H+, K+ - ATPase – the acid pump. This effect on the final step of the gastric acid formation process is dose-dependent and provides for highly effective inhibition of both basal acid secretion and stimulated acid secretion, irrespective of stimulus.

Pharmacodynamic effects

All pharmacodynamic effects observed can be explained by the effect of omeprazole on acid secretion.

Effect on gastric acid secretion

Intravenous omeprazole produces a dose dependent inhibition of gastric acid secretion in humans. In order to immediately achieve a similar reduction of intragastric acidity as after repeated dosing with 20 mg orally, a first dose of 40 mg intravenously is recommended. This results in an immediate decrease in intragastric acidity and a mean decrease over 24 hours of approximately 90% for both IV injection and IV infusion.

The inhibition of acid secretion is related to the area under the plasma concentration-time curve (AUC) of omeprazole and not to the actual plasma concentration at a given time.

No tachyphylaxis has been observed during treatment with omeprazole.

Effect on H. pylori

H. pylori is associated with peptic ulcer disease, including duodenal and gastric ulcer disease. H. pylori is a major factor in the development of gastritis. H. pylori together with gastric acid are major factors in the development of peptic ulcer disease. H. pylori is a major factor in the development of atrophic gastritis which is associated with an increased risk of developing gastric cancer.

Eradication of H. pylori with omeprazole and antimicrobials is associated with high rates of healing and long-term remission of peptic ulcers.

Other effects related to acid inhibition

During long-term treatment gastric glandular cysts have been reported in a somewhat increased frequency. These changes are a physiological consequence of pronounced inhibition of acid secretion, are benign and appear to be reversible.

Decreased gastric acidity due to any means including proton pump inhibitors, increases gastric counts of bacteria normally present in the gastrointestinal tract. Treatment with acid-reducing medicinal products may lead to slightly increased risk of gastrointestinal infections such as Salmonella and Campylobacter.

During treatment with antisecretory medicinal products, serum gastrin increases in response to the decreased acid secretion. Also CgA increases due to decreased gastric acidity. The increased CgA level may interfere with investigations for neuroendocrine tumours. Available published evidence suggests that proton pump inhibitors should be discontinued between 5 days and 2 weeks prior to CgA measurements. This is to allow CgA levels that might be spuriously elevated following PPI treatment to return to reference range.

Pharmacokinetic properties

Distribution

The apparent volume of distribution in healthy subjects is approximately 0.3 l/kg body weight. Omeprazole is 97% plasma protein bound.

Metabolism

Omeprazole is completely metabolised by the cytochrome P450 system (CYP). The major part of its metabolism is dependent on the polymorphically expressed CYP2C19, responsible for the formation of hydroxyomeprazole, the major metabolite in plasma. The remaining part is dependent on another specific isoform, CYP3A4, responsible for the formation of omeprazole sulphone. As a consequence of high affinity of omeprazole to CYP2C19, there is a potential for competitive inhibition and metabolic drug-drug interactions with other substrates for CYP2C19. However, due to low affinity to CYP3A4, omeprazole has no potential to inhibit the metabolism of other CYP3A4 substrates. In addition, omeprazole lacks an inhibitory effect on the main CYP enzymes.

Approximately 3% of the Caucasian population and 15–20% of Asian populations lack a functional CYP2C19 enzyme and are called poor metabolisers. In such individuals the metabolism of omeprazole is probably mainly catalysed by CYP3A4. After repeated once-daily administration of 20 mg omeprazole, the mean AUC was 5 to 10 times higher in poor metabolisers than in subjects having a functional CYP2C19 enzyme (extensive metabolisers). Mean peak plasma concentrations were also higher, by 3 to 5 times. These findings have no implications for the posology of omeprazole.

Excretion

Total plasma clearance is about 30-40 l/h after a single dose. The plasma elimination half-life of omeprazole is usually shorter than one hour both after single and repeated once-daily dosing. Omeprazole is completely eliminated from plasma between doses with no tendency for accumulation during once-daily administration. Almost 80% of a dose of omeprazole is excreted as metabolites in the urine, the remainder in the faeces, primarily originating from bile secretion.

Linearity/non-linearity

The AUC of omeprazole increases with repeated administration. This increase is dose-dependent and results in a non-linear dose-AUC relationship after repeated administration. This time- and dose-dependency is due to a decrease of first pass metabolism and systemic clearance probably caused by an inhibition of the CYP2C19 enzyme by omeprazole and/or its metabolites (e.g. the sulphone).

No metabolite has been found to have any effect on gastric acid secretion.

Special populations

Impaired hepatic function

The metabolism of omeprazole in patients with liver dysfunction is impaired, resulting in an increased AUC. Omeprazole has not shown any tendency to accumulate with once-daily dosing.

Impaired renal function

The pharmacokinetics of omeprazole, including systemic bioavailability and elimination rate, are unchanged in patients with reduced renal function.

Elderly

The metabolism rate of omeprazole is somewhat reduced in elderly subjects (75-79 years of age).

Preclinical safety data

Gastric ECL-cell hyperplasia and carcinoids have been observed in life-long studies in rats treated with omeprazole. These changes are the result of sustained hypergastrinaemia secondary to acid inhibition. Similar findings have been made after treatment with H2-receptor antagonists, proton pump inhibitors and after partial fundectomy. Thus, these changes are not from a direct effect of any individual active substance.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.