QVAR MDI Pressurised inhalation, solution Ref.[9889] Active ingredients: Beclometasone

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2019  Publisher: Teva UK Limited, Brampton Road, Hampden Park, Eastbourne, East Sussex, BN22 9AG, United Kingdom

4.3. Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4. Special warnings and precautions for use

Patients should be properly instructed on the use of the inhaler to ensure that the drug reaches the target areas within the lungs. To be effective, Qvar must be used by patients on a regular basis, even when patients do not have asthma symptoms. When symptoms are controlled, maintenance Qvar therapy should be reduced in a stepwise manner to the minimum effective dose. Inhaled steroid treatment should not be stopped abruptly.

Patients with asthma are at risk of acute attacks and should have regular assessments of their asthma control including pulmonary function tests.

Qvar is not indicated for the immediate relief of asthma attacks. Patients therefore need to have relief medication (inhaled short-acting bronchodilator) available for such circumstances.

Severe asthma exacerbations should be managed in the usual way. Subsequently, it may be necessary to increase the dose of extrafine beclometasone dipropionate up to the maximum daily dose. Systemic steroid treatment may be needed and/or an antibiotic, if there is an infection, together with β-agonist therapy, as needed.

Severe asthma requires regular medical assessment, including lung-function testing, as there is a risk of severe attacks and even death. Patients should be instructed to seek medical attention as soon as possible for review of beclometasone dipropionate therapy, if their peak flow falls, if symptoms persist or worsen or if their short-acting relief bronchodilator treatment becomes less effective, or more inhalations than usual are required, this may indicate deterioration of asthma control. If this occurs, patients should be assessed and the need for increased anti-inflammatory therapy considered (eg. higher doses of inhaled corticosteroid or a course of oral corticosteroid).

Treatment with Qvar should not be stopped abruptly.

Patients who have received systemic steroids for long periods of time or at high doses, or both, need special care and subsequent management when being transferred to inhaled steroid therapy. Patients should have stable asthma before being given inhaled steroids in addition to the usual maintenance dose of systemic steroid. Withdrawal of systemic steroids should be gradual, starting about seven days after the introduction of inhaled steroid therapy. For daily oral doses of prednisolone of 10mg or less, dose reduction in 1mg steps, at intervals of not less than one week is recommended. For patients on daily maintenance doses of oral prednisolone greater than 10mg, larger weekly reductions in the dose might be acceptable. The dose reduction scheme should be chosen to correlate with the magnitude of the maintenance systemic steroid dose.

Most patients can be successfully transferred to inhaled steroids with maintenance of good respiratory function, but special care is necessary for the first few months after the transfer, until the hypothalamic-pituitary-adrenal (HPA) axis has sufficiently recovered to enable the patient to cope with stressful emergencies such as trauma, surgery or serious infections. Patients should, therefore, carry a steroid warning card to indicate the possible need to re-instate systemic steroid therapy rapidly during periods of stress or where airways obstruction or mucus significantly compromises the inhaled route of administration. In addition, it may be advisable to provide such patients with a supply of corticosteroid tablets to use in these circumstances. The dose of inhaled steroids should be increased at this time and then gradually reduced to the maintenance level after the systemic steroid has been discontinued. As recovery from impaired adrenocortical function, caused by prolonged systemic steroid therapy is slow, adrenocortical function should be monitored regularly.

Patients should be advised that they may feel unwell in a non-specific way during systemic steroid withdrawal despite maintenance of, or even improved respiratory function. Patients should be advised to persevere with their inhaled product and to continue withdrawal of systemic steroids, even if feeling unwell, unless there is evidence of HPA axis suppression.

Discontinuation of systemic steroids may also cause exacerbation of allergic diseases such as atopic eczema and rhinitis. These should be treated as required with topical therapy, including corticosteroids and/or antihistamines.

Beclometasone dipropionate, like other inhaled steroids, is absorbed into the systemic circulation from the lungs. Beclometasone dipropionate and its metabolites may exert detectable suppression of adrenal function. Within the dose range 100-800 micrograms daily, clinical studies with Qvar have demonstrated mean values for adrenal function and responsiveness within the normal range.

However, systemic effects of inhaled corticosteroids may occur, particularly at high doses prescribed for prolonged periods. These effects are much less likely to occur than with oral corticosteroids. Possible systemic effects include Cushing’s syndrome, Cushingoid features, adrenal suppression, growth retardation in children and adolescents, decrease in bone mineral density, cataract, glaucoma, blurred vision, and more rarely, a range of psychological or behavioural effects including psychomotor hyperactivity, sleep disorders, anxiety, depression or aggression (particularly in children). Therefore, it is important that the dose of inhaled corticosteroid is reviewed regularly and is titrated to the lowest dose at which effective control of asthma is maintained.

It is recommended that the height of children receiving prolonged treatment with inhaled corticosteroids is regularly monitored. If growth is slowed, therapy should be reviewed with the aim of reducing the dose of inhaled corticosteroid, if possible, to the lowest dose at which effective control of asthma is maintained. In addition, consideration should be given to referring the patient to a paediatric respiratory specialist.

Prolonged treatment with high doses of inhaled corticosteroids, particularly higher than the recommended doses, may result in clinically significant adrenal suppression and acute adrenal crisis. Situations that could potentially trigger acute adrenal crisis include trauma, surgery, infection or any rapid reduction in dose. Presenting symptoms are typically vague and may include anorexia, abdominal pain, weight loss, tiredness, headache, nausea, vomiting, decreased level of consciousness, hypotension, hypoglycaemia and seizures. Additional systemic corticosteroid cover should be considered during periods of stress or elective surgery. Those patients should be instructed to carry a steroid warning card indicating their needs at all times.

Like other corticosteroids, caution is necessary in patients with active or latent pulmonary tuberculosis.

As with other inhalation therapy, paradoxical bronchospasm may occur with an immediate increase in wheezing and shortness of breath after dosing. Paradoxical bronchospasm responds to a fast-acting bronchodilator and should be treated straightaway. Beclometasone dipropionate should be discontinued immediately, the patient should be assessed and alternative therapy instituted if necessary.

Visual disturbance may be reported with systemic and topical corticosteroid use. If a patient presents with symptoms such as blurred vision or other visual disturbances, the patient should be considered for referral to an ophthalmologist for evaluation of possible causes which may include cataract, glaucoma or rare diseases such as central serous chorioretinopathy (CSCR) which have been reported after use of systemic and topical corticosteroids.

Patients should be advised that this product contains small amounts of ethanol. At the normal doses, the amounts of ethanol are negligible and do not pose a risk to patients (see section 4.5).

4.5. Interaction with other medicinal products and other forms of interaction

Qvar contains a small amount of ethanol. There is a theoretical potential for interaction in particularly sensitive patients taking disulfiram or metronidazole.

Beclometasone is less dependent on CYP3A metabolism than some other corticosteroids, and in general interactions are unlikely; however the possibility of systemic effects with concomitant use of strong CYP3A inhibitors (e.g. ritonavir, cobicistat) cannot be excluded, and therefore caution and appropriate monitoring is advised with the use of such agents.

4.6. Pregnancy and lactation

The potential risk of this product for humans is unknown.

Qvar

There is no experience of this product in pregnancy and lactation in humans, therefore the product should only be used if the expected benefits to the mother are thought to outweigh any potential risk to the foetus or neonate

Beclometasone dipropionate

Pregnancy

There is inadequate evidence of safety in human pregnancy. Administration of corticosteroids to pregnant animals can cause abnormalities of foetal development including cleft palate and intra-uterine growth retardation. There may therefore, be a risk of such effects in the human foetus. It should be noted, however, that the foetal changes in animals occur after relatively high systemic exposure. Beclometasone dipropionate is delivered directly to the lungs by the inhaled route and so avoids the high level of exposure that occurs when corticosteroids are given by systemic routes.

The use of beclometasone dipropionate in pregnancy requires that the possible benefits of the drug be weighed against the possible hazards. The drug has been in widespread use for many years without apparent ill consequence.

Breast-feeding

No specific studies examining the transfer of beclometasone dipropionate into the milk of lactating animals have been performed. It is probable that beclometasone dipropionate is excreted in milk. However, given the relatively low doses used by the inhalation route, the levels are likely to be low. In mothers breast feeding their baby the therapeutic benefits of the drug should be weighed against the potential hazards to mother and baby.

There is no experience with or evidence of safety of propellant HFA 134a in human pregnancy or lactation. However, studies on the effect of HFA 134a on reproductive function and embryofoetal development in animals have revealed no clinically relevant adverse effects.

4.7. Effects on ability to drive and use machines

Not relevant.

4.8. Undesirable effects

A serious hypersensitivity reaction including oedema of the eye, face, lips and throat (angioedema) has been reported rarely.

As with other inhalation therapy, paradoxical bronchospasm may occur after dosing. Immediate treatment with a short-acting bronchodilator should be initiated, Qvar should be discontinued immediately and an alternative prophylactic treatment introduced.

Systemic effects of inhaled corticosteroids may occur, particularly with high doses prescribed for prolonged periods. These include adrenal suppression, growth retardation in children and adolescents, decrease in bone mineral density and the occurrence of cataract and glaucoma.

Commonly, when taking Qvar, hoarseness and candidiasis of the throat and mouth may occur. To reduce the risk of hoarseness and candida infection, patients are advised to rinse their mouth after using their inhaler.

Based on the MedDra system organ class and frequencies, adverse events are listed in the table below according to the following frequency estimate: very common (≥1/10); common (≥1/100 to <1/10); Uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000), not known (cannot be estimated from the available data).

Infections and infestations

Common: Candidiasis in mouth and throat

Immune system disorders

Rare: Allergic reactions, angioedema in eyes, throat, lips and face

Endocrine disorders

Very rare: Adrenal suppression*, growth retardation* (in children and adolescents), bone density decreased*

Psychiatric Disorders

Unknown: Psychomotor hyperactivity, sleep disorders, anxiety, depression, aggression, behavioural changes (predominantly in children)

Nervous system disorders

Uncommon: Headache, vertigo, tremor

Eye disorders

Uncommon: Vision, blurred (see also section 4.4)

Very rare: Cataract*, glaucoma*

Not known: Central serous retinopathy

Respiratory, thoracic and mediastinal disorders

Common: Hoarseness, pharyngitis

Uncommon: Cough, increased asthma symptoms

Rare: Paradoxical bronchospasm

Gastrointestinal disorders

Common: Taste disturbances

Uncommon: Nausea

Skin and subcutaneous tissue disorders

Uncommon: Urticaria, rash, pruritus, erythema, purpura

Musculoskeletal and connective tissue disorders

Very rare: Decrease bone mineral density

* Systemic reactions are a possible response to inhaled corticosteroids, especially when a high dose is prescribed for a prolonged time (see section 4.4 Special warnings and precautions for use).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

6.2. Incompatibilities

Not applicable.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.