SINTRINE Chewable tablet Ref.[115332] Active ingredients: Montelukast

Source: Health Products Regulatory Authority (ZA)  Revision Year: 2025  Publisher: Sandoz SA (Pty) Ltd<sup>1</sup>, Waterfall 5-lr, Magwa Crescent West, Waterfall City, Jukskei View, 2090 Marketed by sanofi aventis south africa (pty) ltd. 1 Company Reg. No.: 1990/001979/07

Pharmacodynamic properties

Pharmacological classification: A 10.3 Medicines acting on respiratory system – others (Leukotriene receptor antagonist)
ATC-code: R03DC03

Mechanism of action

The cysteinyl leukotrienes (LTC4, LTD4, LTE4) are potent inflammatory eicosanoids released from various cells including mast cells and eosinophils. These important pro-asthmatic mediators bind to cysteinyl leukotriene receptors (CysLT) found in the human airway and cause airway actions, including bronchoconstriction, mucous secretion, vascular permeability, and eosinophil recruitment.

Pharmacodynamic effects

Montelukast is an orally active compound which binds with high affinity and selectivity to the CysLT1 receptor. In clinical studies, montelukast inhibits bronchoconstriction due to inhaled LTD4 at doses Gas low as 5 mg.

Bronchodilation was observed within 2 hours of oral administration. The bronchodilation effect caused by a β-agonist was additive to that caused by montelukast. Treatment with montelukast inhibited both early- and late-phase bronchoconstriction due to antigen challenge. Montelukast, compared with placebo, decreased peripheral blood eosinophils in adult and paediatric patients. In a separate study, treatment with montelukast significantly decreased eosinophils in the airways (as measured in sputum). In adult and paediatric patients 2 to 14 years of age, montelukast, compared with placebo, decreased peripheral blood eosinophils while improving clinical asthma control.

Pharmacokinetic properties

Absorption

Montelukast is rapidly absorbed following oral administration. For the 10 mg film-coated tablet, the mean peak plasma concentration (Cmax) is achieved 3 hours (Tmax) after administration in adults in the fasted state. The mean oral bioavailability is 64%. The oral bioavailability and Cmax are not influenced by a standard meal. Safety and efficacy were demonstrated in clinical trials where the 10 mg film-coated tablet was administered without regard to the timing of food ingestion.

For the 5 mg chewable tablet, the Cmax is achieved in 2 hours after administration in adults in the fasted state. The mean oral bioavailability is 73% and is decreased to 63% by a standard meal.

After administration of the 4 mg chewable tablet to paediatric patients 2 to 5 years of age in the fasted state, Cmax is achieved 2 hours after administration. The mean Cmax is 66% higher while mean Cmin is lower than in adults receiving a 10 mg tablet.

Distribution

Montelukast is more than 99% bound to plasma proteins. The steady-state volume of distribution of montelukast averages 8-11 litres. Studies in rats with radiolabelled montelukast indicate minimal distribution across the blood-brain barrier. In addition, concentrations of radiolabelled material at 24 hours post-dose were minimal in all other tissues.

Biotransformation

Montelukast is extensively metabolised. In studies with therapeutic doses, plasma concentrations of metabolites of montelukast are undetectable at steady state in adults and children.

Cytochrome P450 2C8 is the major enzyme in the metabolism of montelukast. Additionally, CYP 3A4 and 2C9 may have a minor contribution, although itraconazole, an inhibitor of CYP 3A4, was shown not to change pharmacokinetic variables of montelukast in healthy subjects that received 10 mg montelukast daily. Based on in vitro results in human liver microsomes, therapeutic plasma concentrations of montelukast do not inhibit cytochromes P450 3A4, 2C9, 1A2, 2A6, 2C19, or 2D6. The contribution of metabolites to the therapeutic effect of montelukast is minimal.

Elimination

The plasma clearance of montelukast averages 45 ml/min in healthy adults. Following an oral dose of radiolabelled montelukast, 86% of the radioactivity was recovered in 5-day faecal collections and <0.2% was recovered in urine. Coupled with estimates of montelukast oral bioavailability, this indicates that montelukast and its metabolites are excreted almost exclusively via the bile.

Special Populations

Hepatic insufficiency

Patients with mild to moderate hepatic insufficiency and clinical evidence of cirrhosis had evidence of decreased metabolism of montelukast resulting in approximately 41% higher mean montelukast area under the plasma concentration curve (AUC) following a single 10 mg dose. The elimination of montelukast is slightly prolonged compared with that in healthy subjects (mean half-life 7,4 hours).

No dosage adjustment is necessary for mild to moderate hepatic insufficiency. There are no clinical data in patients with severe hepatic insufficiency (Child-Pugh score >9).

Elderly

The plasma half-life of montelukast is slightly longer in the elderly.

No dosage adjustment is necessary for the elderly.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.