Agalsidase beta

PubChem compound: 52918379

Mechanism of action

The rationale for enzyme replacement therapy is to restore a level of enzymatic activity sufficient to clear the accumulating substrate in the organ tissues; thereby, preventing, stabilizing or reversing the progressive decline in function of these organs before irreversible damage has occurred.

After intravenous infusion, agalsidase beta is rapidly removed from the circulation and taken up by vascular endothelial and parenchymal cells into lysosomes, likely through the mannose-6 phosphate, mannose and asialoglycoprotein receptors.

Pharmacodynamic properties

Fabry disease

Fabry disease is an inherited heterogeneous and multisystemic progressive disease, that affects both males and females. It is characterised by the deficiency of α-galactosidase. Reduced or absent αgalactosidase activity results in the accumulation of GL-3 in the lysosomes of many cell types including the endothelial and parenchymal cells, ultimately leading to life-threatening clinical deteriorations as a result of renal, cardiac and cerebrovascular complications.

Pharmacokinetic properties

Following an intravenous administration of agalsidase beta to adults at doses of 0.3 mg, 1 mg and 3 mg/kg body weight, the AUC values increased more than dose proportional, due to a decrease in clearance, indicating a saturated clearance. The elimination half-life was dose independent and ranged from 45 to 100 minutes.

After intravenous administration of agalsidase beta to adults with an infusion time of approximately 300 minutes and at a dose of 1 mg/kg body weight, biweekly, mean Cmax plasma concentrations ranged from 2000-3500 ng/ml, while the AUCinf ranged from 370-780 µg min/ml. Vss ranged from 8.3-40.8 l, plasma clearance from 119-345 ml/min and the mean elimination half-life from 80-120 minutes.

Agalsidase beta is a protein and is expected to be metabolically degraded through peptide hydrolysis.

Consequently, impaired liver function is not expected to affect the pharmacokinetics of agalsidase beta in a clinically significant way. Renal elimination of agalsidase beta is considered to be a minor pathway for clearance.

Paediatric population

Agalsidase beta pharmacokinetics was also evaluated in two paediatric studies. In one of these studies, 15 paediatric patients with available pharmacokinetics data, aged 8.5 to 16 years weighing 27.1 to 64.9 kg were treated with 1.0 mg/kg every 2 weeks. Agalsidase beta clearance was not influenced by weight in this population. Baseline CL was 77 ml/min with a Vss of 2.6 l; half-life was 55 min. After IgG seroconversion, CL decreased to 35 ml/min, Vss increased to 5.4 l, and half-life increased to 240 min. The net effect of these changes after seroconversion was an increase in exposure of 2- to 3-fold based on AUC and Cmax. No unexpected safety issues were encountered in patients with an increase in exposure after seroconversion.

In another study with 30 paediatric patients with available pharmacokinetics data, aged 5 to 18 years, treated with two lower dose regimens of 0.5 mg/kg every 2 weeks and 1.0 mg/kg every 4 weeks, mean CL was 4.6 and 2.3 ml/min/kg, respectively, mean Vss was 0.27 and 0.22 l/kg, respectively, and mean elimination half-life was 88 and 107 minutes, respectively. After IgG seroconversion, there was no apparent change in CL (+24% and +6%, resp.), while Vss was 1.8 and 2.2 fold higher, with the net effect being a small decrease in Cmax (up to -34% and -11%, resp.) and no change in AUC (-19% and -6%, resp.).

Preclinical safety data

Non-clinical data reveal no special hazard for humans based on studies of safety pharmacology, single dose toxicity, repeated dose toxicity and embryonal/foetal toxicity. Studies with regard to other stages of the development have not been carried out. Genotoxic and carcinogenic potential are not expected.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.