Ibrutinib

Chemical formula: C₂₅H₂₄N₆O₂  Molecular mass: 440.507 g/mol  PubChem compound: 24821094

Mechanism of action

Ibrutinib is a potent, small-molecule inhibitor of Bruton’s tyrosine kinase (BTK). Ibrutinib forms a covalent bond with a cysteine residue (Cys-481) in the BTK active site, leading to sustained inhibition of BTK enzymatic activity. BTK, a member of the Tec kinase family, is an important signalling molecule of the B-cell antigen receptor (BCR) and cytokine receptor pathways. The BCR pathway is implicated in the pathogenesis of several B-cell malignancies, including MCL, diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, and CLL. BTK’s pivotal role in signalling through the B-cell surface receptors results in activation of pathways necessary for B-cell trafficking, chemotaxis and adhesion. Preclinical studies have shown that ibrutinib effectively inhibits malignant B-cell proliferation and survival in vivo as well as cell migration and substrate adhesion in vitro.

Pharmacodynamic properties

Lymphocytosis

Upon initiation of treatment, a reversible increase in lymphocyte counts (i.e. ≥50% increase from baseline and an absolute count >5,000/mcL), often associated with reduction of lymphadenopathy, has been observed in about three fourths of patients with CLL treated with ibrutinib. This effect has also been observed in about one third of patients with relapsed or refractory MCL treated with ibrutinib. This observed lymphocytosis is a pharmacodynamic effect and should not be considered progressive disease in the absence of other clinical findings. In both disease types, lymphocytosis typically occurs during the first month of ibrutinib therapy and typically resolves within a median of 8.0 weeks in patients with MCL and 14 weeks in patients with CLL. A large increase in the number of circulating lymphocytes (e.g. >400,000/mcL) has been observed in some patients.

Lymphocytosis was not observed in patients with WM treated with ibrutinib.

In vitro platelet aggregation

In an in vitro study, ibrutinib demonstrated inhibition of collagen-induced platelet aggregation. Ibrutinib did not show meaningful inhibition of platelet aggregation using other agonists of platelet aggregation.

Effect on QT/QTc interval and cardiac electrophysiology

The effect of ibrutinib on the QTc interval was evaluated in 20 healthy male and female subjects in a randomised, double-blind thorough QT study with placebo and positive controls. At a supratherapeutic dose of 1,680 mg, ibrutinib did not prolong the QTc interval to any clinically relevant extent. The largest upper bound of the 2-sided 90% CI for the baseline adjusted mean differences between ibrutinib and placebo was below 10 ms. In this same study, a concentration dependent shortening in the QTc interval was observed (-5.3 ms [90% CI: -9.4, -1.1] at a Cmax of 719 ng/mL following the supratherapeutic dose of 1,680 mg).

Pharmacokinetic properties

Absorption

Ibrutinib is rapidly absorbed after oral administration with a median Tmax of 1 to 2 hours. Absolute bioavailability in fasted condition (n=8) was 2.9% (90% CI =2.1–3.9) and doubled when combined with a meal. Pharmacokinetics of ibrutinib does not significantly differ in patients with different B-cell malignancies. Ibrutinib exposure increases with doses up to 840 mg. The steady state AUC observed in patients at 560 mg is (mean ± standard deviation) 953 ± 705 ng h/mL. Administration of ibrutinib in fasted condition resulted in approximately 60% of exposure (AUClast) as compared to either 30 minutes before, 30 minutes after (fed condition) or 2 hours after a high fat breakfast.

Ibrutinib has a pH dependent solubility, with lower solubility at higher pH. In fasted healthy subjects administered a single 560 mg dose of ibrutinib after taking omeprazole at 40 mg once daily for 5 days, compared to ibrutinib alone, geometric mean ratios (90% CI) were 83% (68-102%), 92% (78-110%), and 38% (26-53%) for AUC0-24, AUClast, and Cmax, respectively.

Distribution

Reversible binding of ibrutinib to human plasma protein in vitro was 97.3% with no concentration dependence in the range of 50 to 1,000 ng/mL. The apparent volume of distribution at steady state (Vd,ss/F) was approximately 10,000 L.

Metabolism

Ibrutinib is metabolised primarily by CYP3A4 to produce a dihydrodiol metabolite with an inhibitory activity towards BTK approximately 15 times lower than that of ibrutinib. Involvement of CYP2D6 in the metabolism of ibrutinib appears to be minimal.

Therefore, no precautions are necessary in patients with different CYP2D6 genotypes.

Elimination

Apparent clearance (CL/F) is approximately 1,000 L/h. The half-life of ibrutinib is 4 to 13 hours. After a single oral administration of radiolabeled [14C]-ibrutinib in healthy subjects, approximately 90% of radioactivity was excreted within 168 hours, with the majority (80%) excreted in the faeces and <10% accounted for in urine. Unchanged ibrutinib accounted for approximately 1% of the radiolabeled excretion product in faeces and none in urine.

Special populations

Elderly

Population pharmacokinetics indicated that age does not significantly influence ibrutinib clearance from the circulation.

Paediatric population

No pharmacokinetic studies were performed with ibrutinib in patients under 18 years of age.

Gender

Population pharmacokinetics data indicated that gender does not significantly influence ibrutinib clearance from the circulation.

Race

There are insufficient data to evaluate the potential effect of race on ibrutinib pharmacokinetics.

Body weight

Population pharmacokinetics data indicated that body weight (range: 41-146 kg; mean [SD]: 83 [19 kg]) had a negligible effect on ibrutinib clearance.

Renal impairment

Ibrutinib has minimal renal clearance; urinary excretion of metabolites is <10% of the dose. No specific studies have been conducted to date in subjects with impaired renal function. There are no data in patients with severe renal impairment or patients on dialysis.

Hepatic impairment

Ibrutinib is metabolised in the liver. A hepatic impairment trial was performed in non-cancer subjects administered a single dose of 140 mg of medicinal product under fasting conditions. The effect of impaired liver function varied substantially between individuals, but on average a 2.7-, 8.2-, and 9.8-fold increase in ibrutinib exposure (AUClast) was observed in subjects with mild (n=6, Child-Pugh class A), moderate (n=10, Child-Pugh class B) and severe (n=8, Child-Pugh class C) hepatic impairment, respectively. The free fraction of ibrutinib also increased with degree of impairment, with 3.0, 3.8 and 4.8% in subjects with mild, moderate and severe liver impairment, respectively, compared to 3.3% in plasma from matched healthy controls within this study. The corresponding increase in unbound ibrutinib exposure (AUCunbound,last) is estimated to be 4.1-, 9.8-, and 13-fold in subjects with mild, moderate, and severe hepatic impairment, respectively.

Co-administration with CYP substrates

In vitro studies indicated that ibrutinib is a weak reversible inhibitor toward CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and intestinal (but not hepatic) CYP3A4 and does not display clinically relevant time-dependent inhibition of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19 and CYP2D6. The dihydrodiol metabolite of ibrutinib is a weak inhibitor toward CYP2B6, CYP2C8, CYP2C9, and CYP2D6. The dihydrodiol metabolite is at most a weak inducer of CYP450 isoenzymes in vitro. Although ibrutinib is a sensitive CYP3A4 substrate, it does not have a clinically relevant effect on its own exposure.

Co-administration with transport substrates/inhibitors

In vitro studies indicated that ibrutinib is not a substrate of P-gp, nor other major transporters, except OCT2. The dihydrodiol metabolite and other metabolites are P-gp substrates. Ibrutinib is an in vitro inhibitor of P-gp and BCRP.

Preclinical safety data

The following adverse effects were seen in studies of 13-weeks duration in rats and dogs. Ibrutinib was found to induce gastrointestinal effects (soft faeces/diarrhoea and/or inflammation) and lymphoid depletion in rats and dogs with a No Observed Adverse Effect Level (NOAEL) of 30 mg/kg/day in both species. Based on mean exposure (AUC) at the 560 mg/day clinical dose, AUC ratios were 2.6 and 21 at the NOAEL in male and female rats, and 0.4 and 1.8 at the NOAEL in male and female dogs, respectively. Lowest Observed Effect Level (LOEL) (60 mg/kg/day) margins in the dog are 3.6-fold (males) and 2.3-fold (females). In rats, moderate pancreatic acinar cell atrophy (considered adverse) was observed at doses of ≥100 mg/kg in male rats (AUC exposure margin of 2.6-fold) and not observed in females at doses up to 300 mg/kg/day (AUC exposure margin of 21.3-fold). Mildly decreased trabecular and cortical bone was seen in female rats administered ≥100 mg/kg/day (AUC exposure margin of 20.3-fold). All gastrointestinal, lymphoid and bone findings recovered following recovery periods of 6-13 weeks. Pancreatic findings partially recovered during comparable reversal periods.

Juvenile toxicity studies have not been conducted.

Carcinogenicity/genotoxicity

Ibrutinib was not carcinogenic in a 6-month study in the transgenic (Tg.rasH2) mouse at oral doses up to 2000 mg/kg/day with an exposure margin of approximately 23 (males) to 37 (females) times the human AUC of ibrutinib at a dose of 560 mg daily. Ibrutinib has no genotoxic properties when tested in bacteria, mammalian cells or in mice.

Reproductive toxicity

In pregnant rats, ibrutinib at a dose of 80 mg/kg/day was associated with increased post-implantation loss and increased visceral (heart and major vessels) malformations and skeletal variations with an exposure margin 14 times the AUC found in patients at a daily dose of 560 mg. At a dose of ≥40 mg/kg/day, ibrutinib was associated with decreased foetal weights (AUC ratio of ≥5.6 as compared to daily dose of 560 mg in patients). Consequently the foetal NOAEL was 10 mg/kg/day (approximately 1.3 times the AUC of ibrutinib at a dose of 560 mg daily).

In pregnant rabbits, ibrutinib at a dose of 15 mg/kg/day or greater was associated with skeletal malformations (fused sternebrae) and ibrutinib at a dose of 45 mg/kg/day was associated with increased post-implantation loss. Ibrutinib caused malformations in rabbits at a dose of 15 mg/kg/day (approximately 2.0 times the exposure (AUC) in patients with MCL administered ibrutinib 560 mg daily and 2.8 times the exposure in patients with CLL or WM receiving ibrutinib dose 420 mg per day). Consequently the foetal NOAEL was 5 mg/kg/day (approximately 0.7 times the AUC of ibrutinib at a dose of 560 mg daily).

Fertility

No effects on fertility or reproductive capacities were observed in male or female rats up to the maximum dose tested, 100 mg/kg/day (HED 16 mg/kg/day).

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.