Nilotinib

Chemical formula: C₂₈H₂₂F₃N₇O  Molecular mass: 529.516 g/mol  PubChem compound: 644241

Mechanism of action

Nilotinib is a potent inhibitor of the ABL tyrosine kinase activity of the BCR-ABL oncoprotein both in cell lines and in primary Philadelphia-chromosome positive leukaemia cells. The substance binds with high affinity to the ATP-binding site in such a manner that it is a potent inhibitor of wild-type BCR-ABL and maintains activity against 32/33 imatinib-resistant mutant forms of BCR-ABL. As a consequence of this biochemical activity, nilotinib selectively inhibits the proliferation and induces apoptosis in cell lines and in primary Philadelphia-chromosome positive leukaemia cells from CML patients. In murine models of CML, as a single agent nilotinib reduces tumour burden and prolongs survival following oral administration.

Pharmacodynamic properties

Pharmacodynamic effects

Nilotinib has little or no effect against the majority of other protein kinases examined, including Src, except for the PDGF, KIT and Ephrin receptor kinases, which it inhibits at concentrations within the range achieved following oral administration at therapeutic doses recommended for the treatment of CML (see table).

Kinase profile of nilotinib (phosphorylation IC50 nM):

BCR-ABL PDGFR KIT
20 69 210

Pharmacokinetic properties

Absorption

Peak concentrations of nilotinib are reached 3 hours after oral administration. Nilotinib absorption following oral administration was approximately 30%. The absolute bioavailability of nilotinib has not been determined. As compared to an oral drink solution (pH of 1.2 to 1.3), relative bioavailability of nilotinib capsule is approximately 50%. In healthy volunteers, Cmax and area under the serum concentration-time curve (AUC) of nilotinib are increased by 112% and 82%, respectively, compared to fasting conditions when nilotinib is given with food. Administration of nilotinib 30 minutes or 2 hours after food increased bioavailability of nilotinib by 29% or 15%, respectively.

Nilotinib absorption (relative bioavailability) might be reduced by approximately 48% and 22% in patients with total gastrectomy and partial gastrectomy, respectively.

Distribution

The blood-to-plasma ratio of nilotinib is 0.71. Plasma protein binding is approximately 98% on the basis of in vitro experiments. Biotransformation Main metabolic pathways identified in healthy subjects are oxidation and hydroxylation. Nilotinib is the main circulating component in the serum. None of the metabolites contribute significantly to the pharmacological activity of nilotinib. Nilotinib is primarily metabolised by CYP3A4, with possible minor contribution from CYP2C8.

Elimination

After a single dose of radiolabelled nilotinib in healthy subjects, more than 90% of the dose was eliminated within 7 days, mainly in faeces (94% of the dose). Unchanged nilotinib accounted for 69% of the dose.

The apparent elimination half-life estimated from the multiple-dose pharmacokinetics with daily dosing was approximately 17 hours. Inter-patient variability in nilotinib pharmacokinetics was moderate to high.

Linearity/non-linearity

Steady-state nilotinib exposure was dose-dependent, with less than dose-proportional increases in systemic exposure at dose levels higher than 400 mg given as once-daily dosing. Daily systemic exposure to nilotinib with 400 mg twice-daily dosing at steady state was 35% higher than with 800 mg once-daily dosing. Systemic exposure (AUC) of nilotinib at steady state at a dose level of 400 mg twice daily was approximately 13.4% higher than at a dose level of 300 mg twice daily. The average nilotinib trough and peak concentrations over 12 months were approximately 15.7% and 14.8% higher following 400 mg twice-daily dosing compared to 300 mg twice daily. There was no relevant increase in exposure to nilotinib when the dose was increased from 400 mg twice daily to 600 mg twice daily.

Steady-state conditions were essentially achieved by day 8. An increase in serum exposure to nilotinib between the first dose and steady state was approximately 2-fold for daily dosing and 3.8-fold for twice-daily dosing.

Bioavailability/bioequivalence studies

Single-dose administration of 400 mg nilotinib, using 2 hard capsules of 200 mg whereby the content of each hard capsule was dispersed in one teaspoon of apple sauce, was shown to be bioequivalent with a single-dose administration of 2 intact hard capsules of 200 mg.

Paediatric population

Following administration of nilotinib in paediatric patients at 230 mg/m² twice daily, rounded to the nearest 50 mg dose (to a maximum single dose of 400 mg), steady-state exposure and clearance of nilotinib were found to be similar (within 2-fold) to adult patients treated with 400 mg twice daily. The pharmacokinetic exposure of nilotinib following a single or multiple doses appeared to be comparable between paediatric patients from 2 years to <10 years and from ≥10 years to <18 years.

Preclinical safety data

Nilotinib has been evaluated in safety pharmacology, repeated-dose toxicity, genotoxicity, reproductive toxicity, phototoxicity and carcinogenicity (rats and mice) studies.

Safety pharmacology studies

Nilotinib did not have effects on CNS or respiratory functions. In vitro cardiac safety studies demonstrated a preclinical signal for QT prolongation, based upon block of hERG currents and prolongation of the action potential duration in isolated rabbit hearts by nilotinib. No effects were seen in ECG measurements in dogs or monkeys treated for up to 39 weeks or in a special telemetry study in dogs.

Repeated-dose toxicity studies

Repeated-dose toxicity studies in dogs of up to 4 weeks' duration and in cynomolgus monkeys of up to 9 months' duration revealed the liver as the primary target organ of toxicity of nilotinib. Alterations included increased alanine aminotransferase and alkaline phosphatase activity and histopathology findings (mainly sinusoidal cell or Kupffer cell hyperplasia/hypertrophy, bile duct hyperplasia and periportal fibrosis). In general the changes in clinical chemistry were fully reversible after a four-week recovery period and the histological alterations showed partial reversibility. Exposures at the lowest dose levels at which the liver effects were seen were lower than the exposure in humans at a dose of 800 mg/day. Only minor liver alterations were seen in mice or rats treated for up to 26 weeks. Mainly reversible increases in cholesterol levels were seen in rats, dogs and monkeys.

Genotoxicity studies

Genotoxicity studies in bacterial in vitro systems and in mammalian in vitro and in vivo systems with and without metabolic activation did not reveal any evidence for a mutagenic potential of nilotinib.

Carcinogenicity studies

In the 2-year rat carcinogenicity study, the major target organ for non-neoplastic lesions was the uterus (dilatation, vascular ectasia, endothelial cell hyperplasia, inflammation and/or epithelial hyperplasia). There was no evidence of carcinogenicity upon administration of nilotinib at 5, 15 and 40 mg/kg/day. Exposures (in terms of AUC) at the highest dose level represented approximately 2x to 3x human daily steady-state exposure (based on AUC) to nilotinib at the dose of 800 mg/day.

In the 26-week Tg.rasH2 mouse carcinogenicity study, in which nilotinib was administered at 30, 100 and 300 mg/kg/day, skin papillomas/carcinomas were detected at 300 mg/kg, representing approximately 30 to 40 times (based on AUC) the human exposure at the maximum approved dose of 800 mg/day (administered as 400 mg twice daily). The No-Observed-Effect-Level for the skin neoplastic lesions was 100 mg/kg/day, representing approximately 10 to 20 times the human exposure at the maximum approved dose of 800 mg/day (administered as 400 mg twice daily). The major target organs for non-neoplastic lesions were the skin (epidermal hyperplasia), the growing teeth (degeneration/atrophy of the enamel organ of upper incisors and inflammation of the gingiva/odontogenic epithelium of incisors) and the thymus (increased incidence and/or severity of decreased lymphocytes).

Reproductive toxicity and fertility studies

Nilotinib did not induce teratogenicity, but did show embryo- and foetotoxicity at doses that also showed maternal toxicity. Increased post-implantation loss was observed in both the fertility study, which involved treatment of both males and females, and the embryotoxicity study, which involved treatment of females. Embryo-lethality and foetal effects (mainly decreased foetal weights, premature fusion of the facial bones (fused maxilla/zygomatic) visceral and skeletal variations) in rats and increased resorption of foetuses and skeletal variations in rabbits were present in the embryotoxicity studies. In a pre- and postnatal development study in rats, maternal exposure to nilotinib caused reduced pup body weight with associated changes in physical development parameters as well as reduced mating and fertility indices in the offspring. Exposure to nilotinib in females at No-Observed-Adverse-Effect-Levels was generally less or equal to that in humans at 800 mg/day.

No effects on sperm count/motility or on fertility were noted in male and female rats up to the highest tested dose, approximately 5 times the recommended dosage for humans.

Juvenile animal studies

In a juvenile development study, nilotinib was administered via oral gavage to juvenile rats from the first week post partum through young adult (day 70 post partum) at doses of 2, 6 and 20 mg/kg/day. Besides standard study parameters, evaluations of developmental landmarks, CNS effects, mating and fertility were performed. Based on a reduction in body weight in both genders and a delayed preputial separation in males (which may be associated with the reduction in weight), the No-Observed-Effect-Level in juvenile rats was considered to be 6 mg/kg/day. The juvenile animals did not exert increased sensitivity to nilotinib relative to adults. In addition, the toxicity profile in juvenile rats was comparable to that observed in adult rats.

Phototoxicity studies

Nilotinib was shown to absorb light in the UV-B and UV-A range, is distributed into the skin and showed a phototoxic potential in vitro, but no effects have been observed in vivo. Therefore the risk that nilotinib causes photosensitisation in patients is considered very low.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.