Oseltamivir

Chemical formula: C₁₆H₂₈N₂O₄  Molecular mass: 312.405 g/mol  PubChem compound: 65028

Mechanism of action

Oseltamivir phosphate is a pro-drug of the active metabolite (oseltamivir carboxylate). The active metabolite is a selective inhibitor of influenza virus neuraminidase enzymes, which are glycoproteins found on the virion surface. Viral neuraminidase enzyme activity is important both for viral entry into uninfected cells and for the release of recently formed virus particles from infected cells, and for the further spread of infectious virus in the body.

Pharmacodynamic properties

Oseltamivir carboxylate inhibits influenza A and B neuraminidases in vitro. Oseltamivir phosphate inhibits influenza virus infection and replication in vitro. Oseltamivir given orally inhibits influenza A and B virus replication and pathogenicity in vivo in animal models of influenza infection at antiviral exposures similar to that achieved in man with 75 mg twice daily.

Antiviral activity of oseltamivir was supported for influenza A and B by experimental challenge studies in healthy volunteers.

Neuraminidase enzyme IC50 values for oseltamivir for clinically isolated influenza A ranged from 0.1 nM to 1.3 nM, and for influenza B was 2.6 nM. Higher IC50 values for influenza B, up to a median of 8.5 nM, have been observed in published studies.

Pharmacokinetic properties

General Information

Absorption

Oseltamivir is readily absorbed from the gastrointestinal tract after oral administration of oseltamivir phosphate (pro-drug) and is extensively converted by predominantly hepatic esterases to the active metabolite (oseltamivir carboxylate). At least 75% of an oral dose reaches the systemic circulation as the active metabolite. Exposure to the pro-drug is less than 5% relative to the active metabolite. Plasma concentrations of both pro-drug and active metabolite are proportional to dose and are unaffected by co-administration with food.

Distribution

The mean volume of distribution at steady state of the oseltamivir carboxylate is approximately 23 litres in humans, a volume equivalent to extracellular body fluid. Since neuraminidase activity is extracellular, oseltamivir carboxylate distributes to all sites of influenza virus spread. The binding of the oseltamivir carboxylate to human plasma protein is negligible (approximately 3%).

Biotransformation

Oseltamivir is extensively converted to oseltamivir carboxylate by esterases located predominantly in the liver. In vitro studies demonstrated that neither oseltamivir nor the active metabolite is a substrate for, or an inhibitor of, the major cytochrome P450 isoforms. No phase 2 conjugates of either compound have been identified in vivo.

Elimination

Absorbed oseltamivir is primarily (>90%) eliminated by conversion to oseltamivir carboxylate. It is not further metabolised and is eliminated in the urine. Peak plasma concentrations of oseltamivir carboxylate decline with a half-life of 6 to 10 hours in most subjects. The active metabolite is eliminated entirely by renal excretion. Renal clearance (18.8 l/h) exceeds glomerular filtration rate (7.5 l/h) indicating that tubular secretion occurs in addition to glomerular filtration. Less than 20% of an oral radiolabelled dose is eliminated in faeces.

Other special populations

Paediatric population

Infants less than 1 year of age

The pharmacokinetics, pharmacodynamics and safety of oseltamivir have been evaluated in two uncontrolled open-label studies including influenza infected children less than one year of age (n=135). The rate of clearance of the active metabolite, corrected for body-weight, decreases with ages below one year. Metabolite exposures are also more variable in the youngest infants. The available data indicates that the exposure following a 3 mg/kg dose in infants 0-12 months of age provides pro-drug and metabolite exposures anticipated to be efficacious with a safety profile comparable to that seen in older children and adults using the approved dose.The reported adverse events were consistent with the established safety profile in older children.

There are no data available for infants below 1 year of age for post exposure prevention of influenza. Prevention during an influenza epidemic in the community has not been studied in children below 12 years of age.

Post-exposure prevention of influenza in infants less than 1 year of age during a pandemic

Simulation of once daily dosing of 3mg/kg in infants <1 year shows an exposure in the same range or higher than for once daily dosing of 75 mg in adults. Exposure does not exceed that for treatment of infants <1 year (3 mg/kg twice daily) and is anticipated to result in a comparable safety profile. No clinical studies of prophylaxis in infants aged <1 have been performed.

Infants and children 1 year of age or older

The pharmacokinetics of oseltamivir have been evaluated in single-dose pharmacokinetic studies in infants, children and adolescents 1 to 16 years of age. Multiple-dose pharmacokinetics were studied in a small number of children enrolled in a clinical efficacy study. Younger children cleared both the pro-drug and its active metabolite faster than adults, resulting in a lower exposure for a given mg/kg dose. Doses of 2 mg/kg give oseltamivir carboxylate exposures comparable to those achieved in adults receiving a single 75 mg dose (approximately 1 mg/kg). The pharmacokinetics of oseltamivir in children and adolescents 12 years of age or older are similar to those in adults.

Elderly

Exposure to the active metabolite at steady state was 25 to 35% higher in older people (age 65 to 78 years) compared to adults less than 65 years of age given comparable doses of oseltamivir. Half-lives observed in older people were similar to those seen in young adults. On the basis of drug exposure and tolerability, dosage adjustments are not required for older people unless there is evidence of moderate or severe renal impairment (creatinine clearance below 60 ml/min).

Renal impairment

Administration of 100 mg oseltamivir phosphate twice daily for 5 days to patients with various degrees of renal impairment showed that exposure to oseltamivir carboxylate is inversely proportional to declining renal function.

Hepatic impairment

In vitro studies have concluded that exposure to oseltamivir is not expected to be increased significantly nor is exposure to the active metabolite expected to be significantly decreased in patients with hepatic impairment.

Pregnant Women

A pooled population pharmacokinetic analysis indicates that the oseltamivir dosage regimen in lower exposure (30% on average across all trimesters) to the active metabolite in pregnant women compared to non-pregnant women. The lower predicted exposure however, remains above inhibitoy concentrations (IC95 values) and at a therapeutic level for a range of influenza virus strains. In addition, there is evidence from observational studies showing benefit of the current dosing regimen in this patient population. Therefore, dose adjustments are not recommended for pregnant women in the treatment or prophylaxis of influenza.

Immunocompromised Patients

Population pharmacokinetic analysis indicates that treatment of adult immunocompromised patients with oseltamivir results in an increased exposure (of up to 50%) to the active metabolite when compared to adult nonimmunocompromised patients with comparable creatinine clearance. Due to the wide safety margin of the active metabolite, no dose adjustments are required in adults due to their immunocompromised status. However, for adult immunocompromised patients with renal impairment, doses should be adjusted.

Preclinical safety data

Preclinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated-dose toxicity and genotoxicity. Results of the conventional rodent carcinogenicity studies showed a trend towards a dose-dependent increase in the incidence of some tumours that are typical for the rodent strains used. Considering the margins of exposure in relation to the expected exposure in the human use, these findings do not change the benefit-risk of oseltamivir in its adopted therapeutic indications.

Teratology studies have been conducted in rats and rabbits at doses of up to 1,500 mg/kg/day and 500 mg/kg/day, respectively. No effects on foetal development were observed. A rat fertility study up to a dose of 1,500 mg/kg/day demonstrated no adverse reactions on either sex. In pre- and post-natal rat studies, prolonged parturition was noted at 1,500 mg/kg/day: the safety margin between human exposure and the highest no-effect dose (500 mg/kg/day) in rats is 480-fold for oseltamivir and 44-fold for the active metabolite, respectively. Foetal exposure in the rats and rabbits was approximately 15 to 20% of that of the mother.

In lactating rats, oseltamivir and the active metabolite are excreted in the milk. Limited data indicate that oseltamivir and the active metabolite are excreted in human milk. Extrapolation of the animal data provides estimates of 0.01 mg/day and 0.3 mg/day for the respective compounds.

A potential for skin sensitisation to oseltamivir was observed in a “maximisation” test in guinea pigs. Approximately 50% of the animals treated with the unformulated active substance showed erythema after challenging the induced animals. Reversible irritancy of rabbits' eyes was detected.

Whereas very high oral single doses of oseltamivir phosphate salt, up to the highest dose tested (1,310 mg/kg), had no adverse reactions in adult rats, such doses resulted in toxicity in juvenile 7-dayold rat pups, including death. These reactions were seen at doses of 657 mg/kg and higher. At 500 mg/kg, no adverse reactions were seen, including upon chronic treatment (500 mg/kg/day administered from 7 to 21 days post partum).

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.