Palbociclib

Chemical formula: C₂₄H₂₉N₇O₂  Molecular mass: 447.533 g/mol  PubChem compound: 5330286

Mechanism of action

Palbociclib is a highly selective, reversible inhibitor of cyclin-dependent kinases (CDK) 4 and 6. Cyclin D1 and CDK4/6 are downstream of multiple signalling pathways which lead to cellular proliferation.

Pharmacodynamic properties

Pharmacodynamic effects

Through inhibition of CDK4/6, palbociclib reduced cellular proliferation by blocking progression of the cell from G1 into S phase of the cell cycle. Testing of palbociclib in a panel of molecularly profiled breast cancer cell lines revealed high activity against luminal breast cancers, particularly ER-positive breast cancers. In the cell lines tested, the loss of retinoblastoma (Rb) was associated with loss of palbociclib activity. However, in a follow-up study with fresh tumour samples, no relation between RB1 expression and tumour response was observed. Similarly, no relation was observed when studying the response to palbociclib in in vivo models with patient-derived xenografts (PDX models). Available clinical data are reported in the clinical efficacy and safety section.

Cardiac electrophysiology

The effect of palbociclib on the QT interval corrected for heart rate (QTc) interval was evaluated using time matched electrocardiogram (ECG) evaluating the change from baseline and corresponding pharmacokinetic data in 77 patients with advanced breast cancer. Palbociclib did not prolong the QTc to any clinically relevant extent at the recommended dose of 125 mg daily (Schedule 3/1).

Pharmacokinetic properties

The pharmacokinetics of palbociclib were characterised in patients with solid tumours including advanced breast cancer and in healthy volunteers.

Absorption

The mean Cmax of palbociclib is generally observed between 6 to 12 hours following oral administration. The mean absolute bioavailability of palbociclib after an oral 125 mg dose is 46%. In the dosing range of 25 mg to 225 mg, the area under the curve (AUC) and Cmax increase proportionally with dose in general. Steady state was achieved within 8 days following repeated once daily dosing. With repeated once daily administration, palbociclib accumulates with a median accumulation ratio of 2.4 (range 1.5-4.2).

Food effect

Palbociclib absorption and exposure were very low in approximately 13% of the population under the fasted condition. Food intake increased the palbociclib exposure in this small subset of the population, but did not alter palbociclib exposure in the rest of the population to a clinically relevant extent. Compared to palbociclib given under overnight fasted conditions, the AUCinf and Cmax of palbociclib increased by 21% and 38% when given with high-fat food, by 12% and 27% when given with low-fat food, and by 13% and 24% when moderate-fat food was given 1 hour before and 2 hours after palbociclib dosing. In addition, food intake significantly reduced the intersubject and intrasubject variability of palbociclib exposure. Based on these results, palbociclib should be taken with food.

Distribution

Binding of palbociclib to human plasma proteins in vitro was ~85%, with no concentration dependence. The mean fraction unbound (fu) of palbociclib in human plasma in vivo increased incrementally with worsening hepatic function. There was no obvious trend in the mean palbociclib fu in human plasma in vivo with worsening renal function. In vitro, the uptake of palbociclib into human hepatocytes occurred mainly via passive diffusion. Palbociclib is not a substrate of OATP1B1 or OATP1B3.

Biotransformation

In vitro and in vivo studies indicate that palbociclib undergoes extensive hepatic metabolism in humans. Following oral administration of a single 125 mg dose of [14C]palbociclib to humans, the major primary metabolic pathways for palbociclib involved oxidation and sulphonation, with acylation and glucuronidation contributing as minor pathways. Palbociclib was the major circulating drug-derived entity in plasma.

The majority of the material was excreted as metabolites. In faeces, the sulfamic acid conjugate of palbociclib was the major drug-related component, accounting for 25.8% of the administered dose. In vitro studies with human hepatocytes, liver cytosolic and S9 fractions, and recombinant sulphotransferase (SULT) enzymes indicated that CYP3A and SULT2A1 are mainly involved in the metabolism of palbociclib.

Elimination

The geometric mean apparent oral clearance (CL/F) of palbociclib was 63 L/h, and the mean plasma elimination half-life was 28.8 hours in patients with advanced breast cancer. In 6 healthy male subjects given a single oral dose of [14C]palbociclib, a median of 92% of the total administered radioactive dose was recovered in 15 days; faeces (74% of dose) was the major route of excretion, with 17% of the dose recovered in urine. Excretion of unchanged palbociclib in faeces and urine was 2% and 7% of the administered dose, respectively.

In vitro, palbociclib is not an inhibitor of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, and 2D6, and is not an inducer of CYP1A2, 2B6, 2C8, and 3A4 at clinically relevant concentrations.

In vitro evaluations indicate that palbociclib has low potential to inhibit the activities of organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, organic anion transporting polypeptide (OATP)1B1, OATP1B3, and bile salt export pump (BSEP) at clinically relevant concentrations.

Special populations

Age, gender, and body weight

Based on a population pharmacokinetic analysis in 183 patients with cancer (50 male and 133 female patients, age ranging from 22 to 89 years, and body weight ranging from 38 to 123 kg), gender had no effect on the exposure of palbociclib, and age and body weight had no clinically important effect on the exposure of palbociclib.

Paediatric population

Pharmacokinetics of palbociclib has not been evaluated in patients <18 years of age.

Hepatic impairment

Data from a pharmacokinetic trial in subjects with varying degrees of hepatic function indicate that palbociclib unbound exposure (unbound AUCinf) decreased by 17% in subjects with mild hepatic impairment (Child-Pugh class A), and increased by 34% and 77% in subjects with moderate (Child-Pugh class B) and severe (Child-Pugh class C) hepatic impairment, respectively, relative to subjects with normal hepatic function. Peak palbociclib unbound exposure (unbound Cmax) was increased by 7%, 38% and 72% for mild, moderate and severe hepatic impairment, respectively, relative to subjects with normal hepatic function. In addition, based on a population pharmacokinetic analysis that included 183 patients with advanced cancer, where 40 patients had mild hepatic impairment based on National Cancer Institute (NCI) classification (total bilirubin ≤ Upper Limit of Normal (ULN) and Aspartate Aminotransferase (AST) > ULN, or total bilirubin >1.0 to 1.5 × ULN and any AST), mild hepatic impairment had no effect on the pharmacokinetics of palbociclib.

Renal impairment

Data from a pharmacokinetic trial in subjects with varying degrees of renal function indicate that total palbociclib exposure (AUCinf) increased by 39%, 42%, and 31% with mild (60 mL/min≤ CrCl <90 mL/min), moderate (30 mL/min≤ CrCl <60 mL/min), and severe (CrCl <30 mL/min) renal impairment, respectively, relative to subjects with normal (CrCl ≥90 mL/min) renal function. Peak palbociclib exposure (Cmax) was increased by 17%, 12%, and 15% for mild, moderate, and severe renal impairment, respectively, relative to subjects with normal renal function. In addition, based on a population pharmacokinetic analysis that included 183 patients with advanced cancer, where 73 patients had mild renal impairment and 29 patients had moderate renal impairment, mild and moderate renal impairment had no effect on the pharmacokinetics of palbociclib. The pharmacokinetics of palbociclib have not been studied in patients requiring haemodialysis.

Ethnicity

In a pharmacokinetic study in healthy volunteers, palbociclib AUCinf and Cmax values were 30% and 35% higher, respectively, in Japanese subjects compared with non-Asian subjects after a single oral dose. However, this finding was not reproduced consistently in subsequent studies in Japanese or Asian breast cancer patients after multiple dosing. Based on an analysis of the cumulative pharmacokinetic, safety, and efficacy data across Asian and non-Asian populations, no dose adjustment based on Asian race is considered necessary.

Preclinical safety data

The primary target organ findings of potential relevance to humans included haematolymphopoietic and male reproductive organ effects in rats and dogs in studies up to 39 weeks duration. Effects on glucose metabolism were associated with findings in the pancreas and secondary effects on eye, teeth, kidney, and adipose tissue in studies ≥15 weeks duration in rats only and bone changes were observed in rats only following 27 weeks of dosing. These systemic toxicities were generally observed at clinically relevant exposures based on AUC. In addition, cardiovascular effects (QTc prolongation, decreased heart rate, and increased RR interval and systolic blood pressure) were identified in telemetered dogs at ≥4 times human clinical exposure based on Cmax. The reversibility of the effects on glucose homeostasis, pancreas, eye, kidney, and bone was not established following a 12-week nondosing period, whereas partial to full reversal of effects on the haematolymphopoietic and male reproductive systems, teeth, and adipose tissue was observed.

Carcinogenicity

Palbociclib was assessed for carcinogenicity in a 6-month transgenic mouse study and in a 2-year rat study. Palbociclib was negative for carcinogenicity in transgenic mice at doses up to 60 mg/kg/day (No Observed Effect Level [NOEL] approximately 11 times human clinical exposure based on AUC). Palbociclib-related neoplastic finding in rats included an increased incidence of microglial cell tumours in the central nervous system of males at 30 mg/kg/day; there were no neoplastic findings in female rats at any dose up to 200 mg/kg/day. The NOEL for palbociclib-related carcinogenicity effects was 10 mg/kg/day (approximately 2 times the human clinical exposure based on AUC) and 200 mg/kg/day (approximately 4 times the human clinical exposure based on AUC) in males and females, respectively. The relevance of the male rat neoplastic finding to humans is unknown.

Genotoxicity

Palbociclib was not mutagenic in a bacterial reverse mutation (Ames) assay and did not induce structural chromosomal aberrations in the in vitro human lymphocyte chromosome aberration assay.

Palbociclib induced micronuclei via an aneugenic mechanism in Chinese Hamster Ovary cells in vitro and in the bone marrow of male rats at doses ≥100 mg/kg/day. The exposure of animals at the no observed effect level for aneugenicity was approximately 7 times human clinical exposure based on AUC.

Impairment of fertility

Palbociclib did not affect mating or fertility in female rats at any dose tested up to 300 mg/kg/day (approximately 3 times human clinical exposure based on AUC), and no adverse effects were observed in female reproductive tissues in repeat-dose toxicity studies up to 300 mg/kg/day in the rat and 3 mg/kg/day in the dog (approximately 5 and 3 times human clinical exposure based on AUC, respectively).

Palbociclib is considered to have the potential to impair reproductive function and fertility in male humans based on non-clinical findings in rats and dogs. Palbociclib-related findings in the testis, epididymis, prostate, and seminal vesicle included decreased organ weight, atrophy or degeneration, hypospermia, intratubular cellular debris, lower sperm motility and density, and decreased secretion. These findings were observed in rats and/or dogs at exposures 9 times or subtherapeutic compared to human clinical exposure based on AUC, respectively. Partial reversibility of male reproductive organ effects was observed in the rat and dog following a 4- and 12-week nondosing period, respectively. Despite these male reproductive organ findings, there were no effects on mating or fertility in male rats at projected exposure levels 13 times human clinical exposure based on AUC.

Developmental toxicity

Palbociclib is a reversible inhibitor of cyclin-dependent kinases 4 and 6, which are both involved in regulating the cell cycle. It may therefore have risk of foetal harm if used during pregnancy. Palbociclib was foetotoxic in pregnant animals. An increased incidence of a skeletal variation (increased incidence of a rib present at the seventh cervical vertebra) at ≥100 mg/kg/day was observed in rats. Reduced foetal body weights were observed at a maternally toxic dose of 300 mg/kg/day in rats (3 times human clinical exposure based on AUC), and an increased incidence of skeletal variations, including small phalanges in the forelimb was observed at a maternally toxic dose of 20 mg/kg/day in rabbits (4 times human clinical exposure based on AUC). Actual foetal exposure and cross-placenta transfer have not been examined.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.