Ramipril and Amlodipine

Mechanism of action

Ramipril

Ramiprilat, the active metabolite of the prodrug ramipril, inhibits the enzyme dipeptidylcarboxypeptidase I (synonyms: angiotensin-converting enzyme; kininase II). In plasma and tissue this enzyme catalyses the conversion of angiotensin I to the active vasoconstrictor substance angiotensin II, as well as the breakdown of the active vasodilator bradykinin. Reduced angiotensin II formation and inhibition of bradykinin breakdown lead to vasodilatation.

Since angiotensin II also stimulates the release of aldosterone, ramiprilat causes a reduction in aldosterone secretion. The average response to ACE inhibitor monotherapy was lower in black (Afro-Caribbean) hypertensive patients (usually a low-renin hypertensive population) than in non-black patients.

Amlodipine

Amlodipine is a calcium ion influx inhibitor of the dihydropyridine group (slow channel blocker or calcium ion antagonist) and inhibits the transmembrane influx of calcium ions into cardiac and vascular smooth muscle.

The mechanism of the antihypertensive action of amlodipine is due to a direct relaxant effect on vascular smooth muscle. The precise mechanism by which amlodipine relieves angina has not been fully determined but amlodipine reduces total ischaemic burden by the following two actions:

1) Amlodipine dilates peripheral arterioles and thus, reduces the total peripheral resistance (afterload) against which the heart works. Since the heart rate remains stable, this unloading of the heart reduces myocardial energy consumption and oxygen requirements.

2) The mechanism of action of amlodipine also probably involves dilatation of the main coronary arteries and coronary arterioles, both in normal and ischaemic regions. This dilatation increases myocardial oxygen delivery in patients with coronary artery spasm (Prinzmetal’s or variant angina).

Pharmacodynamic properties

Ramipril

Antihypertensive properties

Administration of ramipril causes a marked reduction in peripheral arterial resistance. Generally, there are no major changes in renal plasma flow and glomerular filtration rate. Administration of ramipril to patients with hypertension leads to a reduction in supine and standing blood pressure without a compensatory rise in heart rate. In most patients the onset of the antihypertensive effect of a single dose becomes apparent 1 to 2 hours after oral administration. The peak effect of a single dose is usually reached 3 to 6 hours after oral administration. The antihypertensive effect of a single dose usually lasts for 24 hours.

The maximum antihypertensive effect of continued treatment with ramipril is generally apparent after 3 to 4 weeks. It has been shown that the antihypertensive effect is sustained under long term therapy lasting 2 years. Abrupt discontinuation of ramipril does not produce a rapid and excessive rebound increase in blood pressure.

Heart failure

In addition to conventional therapy with diuretics and optional cardiac glycosides, ramipril has been shown to be effective in patients with functional classes II-IV of the New-York Heart Association. The drug had beneficial effects on cardiac haemodynamics (decreased left and right ventricular filling pressures, reduced total peripheral vascular resistance, increased cardiac output and improved cardiac index). It also reduced neuroendocrine activation.

Amlodipine

In patients with hypertension, once daily dosing provides clinically significant reductions of blood pressure in both the supine and standing positions throughout the 24 hour interval. Due to the slow onset of action, acute hypotension is not a feature of amlodipine administration.

In patients with angina, once daily administration of amlodipine increases total exercise time, time to angina onset, and time to 1 mm ST segment depression, and decreases both angina attack frequency and glyceryl trinitrate tablet consumption.

Amlodipine has not been associated with any adverse metabolic effects or changes in plasma lipids and is suitable for use in patients with asthma, diabetes, and gout.

Pharmacokinetic properties

Ramipril

Absorption

Following oral administration ramipril is rapidly absorbed from the gastrointestinal tract: peak plasma concentrations of ramipril are reached within one hour. Based on urinary recovery, the extent of absorption is at least 56 % and is not significantly influenced by the presence of food in the gastrointestinal tract. The bioavailability of the active metabolite ramiprilat after oral administration of 2.5 mg and 5 mg ramipril is 45%.

Peak plasma concentrations of ramiprilat, the sole active metabolite of ramipril are reached 2-4 hours after ramipril intake. Steady state plasma concentrations of ramiprilat after once daily dosing with the usual doses of ramipril are reached by about the fourth day of treatment.

Distribution

The serum protein binding of ramipril is about 73% and that of ramiprilat about 56%.

Biotransformation

Ramipril is almost completely metabolised to ramiprilat, and to the diketopiperazine ester, the diketopiperazine acid, and the glucuronides of ramipril and ramiprilat.

Elimination

Excretion of the metabolites is primarily renal.

Plasma concentrations of ramiprilat decline in a polyphasic manner. Because of its potent, saturable binding to ACE and slow dissociation from the enzyme, ramiprilat shows a prolonged terminal elimination phase at very low plasma concentrations.

After multiple once-daily doses of ramipril, the effective half-life of ramiprilat concentrations was 13-17 hours for the 5-10 mg doses and longer for the lower 1.25-2.5 mg doses. This difference is related to the saturable capacity of the enzyme to bind ramiprilat.

Patients with renal impairment

Renal excretion of ramiprilat is reduced in patients with impaired renal function, and renal ramiprilat clearance is proportionally related to creatinine clearance. This results in elevated plasma concentrations of ramiprilat, which decrease more slowly than in subjects with normal renal function.

Patients with hepatic impairment

In patients with impaired liver function, the metabolism of ramipril to ramiprilat was delayed, due to diminished activity of hepatic esterases, and plasma ramipril levels in these patients were increased. Peak concentrations of ramiprilat in these patients, however, are not different from those seen in subjects with normal hepatic function.

Lactation

A single oral dose of ramipril produced an undetectable level of ramipril and its metabolite in breast milk. However the effect of multiple doses is not known.

Paediatric Population

The pharmacokinetic profile of ramipril was studied in 30 paediatric hypertensive patients, aged 2-16 years, weighing ≥ 10 kg. After doses of 0.05 to 0.2 mg/kg, ramipril was rapidly and extensively metabolized to ramiprilat. Peak plasma concentrations of ramiprilat occurred within 2-3 hours.

Ramiprilat clearance highly correlated with the log of body weight (p<0.01) as well as dose (p<0.001). Clearance and volume of distribution increased with increasing children age for each dose group. The dose of 0.05 mg/kg in children achieved exposure levels comparable to those in adults treated with ramipril 5 mg. The dose of 0.2 mg/kg in children resulted in exposure levels higher than the maximum recommended dose of 10 mg per day in adults.

Amlodipine

Absorption, distribution, plasma protein binding

After oral administration of therapeutic doses, amlodipine is well absorbed with peak blood levels between 6-12 hours post dose. Absolute bioavailability has been estimated to be between 64 and 80%. The volume of distribution is approximately 21 l/kg. In vitro studies have shown that approximately 97.5% of circulating amlodipine is bound to plasma proteins.

The bioavailability of amlodipine is not affected by food intake.

Biotransformation/elimination

The terminal plasma elimination half-life is about 35-50 hours and is consistent with once daily dosing. Amlodipine is extensively metabolised by the liver to inactive metabolites with 10% of the parent compound and 60% of metabolites excreted in the urine.

Hepatic impairment

Very limited clinical data are available regarding amlodipine administration in patients with hepatic impairment. Patients with hepatic insufficiency have decreased clearance of amlodipine resulting in a longer half-life and an increase in AUC of approximately 40-60%.

Elderly population

The time to reach peak plasma concentrations of amlodipine is similar in elderly and younger subjects. Amlodipine clearance tends to be decreased with resulting increases in AUC and elimination half-life in elderly patients. Increases in AUC and elimination half-life in patients with congestive heart failure were as expected for the patient age group studied.

Paediatric population

A population PK study has been conducted in 74 hypertensive children aged from 1 to 17 years (with 34 patients aged 6 to 12 years and 28 patients aged 13 to 17 years) receiving amlodipine between 1.25 and 20 mg given either once or twice daily. In children 6 to 12 years and in adolescents 13-17 years of age the typical oral clearance (CL/F) was 22.5 and 27.4 L/hr respectively in males and 16.4 and 21.3 L/hr respectively in females. Large variability in exposure between individuals was observed. Data reported in children below 6 years is limited.

Preclinical safety data

Related to ramipril

Oral administration of ramipril has been found to be devoid of acute toxicity in rodents and dogs. Studies involving chronic oral administration have been conducted in rats, dogs and monkeys. Indications of plasma electrolyte shifts and changes in blood picture have been found in the 3 species.

As an expression of the pharmacodynamic activity of ramipril, pronounced enlargement of the juxtaglomerular apparatus has been noted in the dog and monkey from daily doses of 250 mg/kg/d. Rats, dogs and monkeys tolerated daily doses of 2, 2.5 and 8 mg/kg/d respectively without harmful effects. Reproduction toxicology studies in the rat, rabbit and monkey did not disclose any teratogenic properties. Fertility was not impaired either in male or in female rats.

The administration of ramipril to female rats during the foetal period and lactation produced irreversible renal damage (dilatation of the renal pelvis) in the offspring at daily doses of 50 mg/kg body weight or higher.

Extensive mutagenicity testing using several test systems has yielded no indication that ramipril possesses mutagenic or genotoxic properties.

Irreversible kidney damage has been observed in very young rats given a single dose of ramipril.

Related to amlodipine

Reproductive toxicology

Reproductive studies in rats and mice have shown delayed date of delivery, prolonged duration of labour and decreased pup survival at dosages approximately 50 times greater than the maximum recommended dosage for humans based on mg/kg.

Impairment of fertility

There was no effect on the fertility of rats treated with amlodipine (males for 64 days and females 14 days prior to mating) at doses up to 10 mg/kg/day (8 times* the maximum recommended human dose of 10 mg on a mg/m² basis).

In another rat study in which male rats were treated with amlodipine besilate for 30 days at a dose comparable with the human dose based on mg/kg, decreased plasma follicle-stimulating hormone and testosterone were found as well as decreases in sperm density and in the number of mature spermatids and Sertoli cells.

Carcinogenesis, mutagenesis

Rats and mice treated with amlodipine in the diet for two years, at concentrations calculated to provide daily dosage levels of 0.5, 1.25, and 2.5 mg/kg/day showed no evidence of carcinogenicity. The highest dose (for mice, similar to, and for rats twice* the maximum recommended clinical dose of 10 mg on a mg/m² basis) was close to the maximum tolerated dose for mice but not for rats.

Mutagenicity studies revealed no drug related effects at either the gene or chromosome levels.

* Based on patient weight of 50 kg.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.