Tenofovir disoproxil and Emtricitabine

Chemical formula: C₃₁H₄₄FN₈O₁₇PS  Molecular mass: 882.227 g/mol 

Mechanism of action

Emtricitabine is a nucleoside analogue of cytidine. Tenofovir disoproxil is converted in vivo to tenofovir, a nucleoside monophosphate (nucleotide) analogue of adenosine monophosphate. Both emtricitabine and tenofovir have activity that is specific to human immunodeficiency virus (HIV-1 and HIV-2) and hepatitis B virus.

Emtricitabine and tenofovir are phosphorylated by cellular enzymes to form emtricitabine triphosphate and tenofovir diphosphate, respectively. In vitro studies have shown that both emtricitabine and tenofovir can be fully phosphorylated when combined together in cells. Emtricitabine triphosphate and tenofovir diphosphate competitively inhibit HIV-1 reverse transcriptase, resulting in DNA chain termination.

Both emtricitabine triphosphate and tenofovir diphosphate are weak inhibitors of mammalian DNA polymerases and there was no evidence of toxicity to mitochondria in vitro and in vivo.

Pharmacodynamic properties

Antiviral activity in vitro

Synergistic antiviral activity was observed with the combination of emtricitabine and tenofovir in vitro. Additive to synergistic effects were observed in combination studies with protease inhibitors, and with nucleoside and non-nucleoside analogue inhibitors of HIV reverse transcriptase.

Resistance

In vitro

Resistance has been seen in vitro and in some HIV-1 infected patients due to the development of the M184V/I mutation with emtricitabine or the K65R mutation with tenofovir. Emtricitabine-resistant viruses with the M184V/I mutation were cross-resistant to lamivudine, but retained sensitivity to didanosine, stavudine, tenofovir and zidovudine. The K65R mutation can also be selected by abacavir or didanosine and results in reduced susceptibility to these agents plus lamivudine, emtricitabine and tenofovir. Tenofovir disoproxil should be avoided in patients with HIV-1 harbouring the K65R mutation. In addition, a K70E substitution in HIV-1 reverse transcriptase has been selected by tenofovir and results in low-level reduced susceptibility to abacavir, emtricitabine, lamivudine and tenofovir. HIV-1 expressing three or more thymidine analogue associated mutations (TAMs) that included either the M41L or L210W reverse transcriptase mutation showed reduced susceptibility to tenofovir disoproxil.

Pharmacokinetic properties

Absorption

The bioequivalence of one emtricitabine/tenofovir disoproxil film-coated tablet with one emtricitabine 200 mg hard capsule and one tenofovir disoproxil 245 mg film-coated tablet was established following single dose administration to fasting healthy subjects. Following oral administration of emtricitabine/tenofovir disoproxil to healthy subjects, emtricitabine and tenofovir disoproxil are rapidly absorbed and tenofovir disoproxil is converted to tenofovir. Maximum emtricitabine and tenofovir concentrations are observed in serum within 0.5 to 3.0 h of dosing in the fasted state. Administration of emtricitabine/tenofovir disoproxil with food resulted in a delay of approximately three quarters of an hour in reaching maximum tenofovir concentrations and increases in tenofovir AUC and Cmax of approximately 35% and 15%, respectively, when administered with a high fat or light meal, compared to administration in the fasted state. In order to optimise the absorption of tenofovir, it is recommended that emtricitabine/tenofovir disoproxil should preferably be taken with food.

Distribution

Following intravenous administration the volume of distribution of emtricitabine and tenofovir was approximately 1.4 L/kg and 800 mL/kg, respectively. After oral administration of emtricitabine or tenofovir disoproxil, emtricitabine and tenofovir are widely distributed throughout the body. In vitro binding of emtricitabine to human plasma proteins was <4% and independent of concentration over the range of 0.02 to 200 µg/mL. In vitro protein binding of tenofovir to plasma or serum protein was less than 0.7 and 7.2%, respectively, over the tenofovir concentration range 0.01 to 25 µg/mL.

Biotransformation

There is limited metabolism of emtricitabine. The biotransformation of emtricitabine includes oxidation of the thiol moiety to form the 3'-sulphoxide diastereomers (approximately 9% of dose) and conjugation with glucuronic acid to form 2'-O-glucuronide (approximately 4% of dose). In vitro studies have determined that neither tenofovir disoproxil nor tenofovir are substrates for the CYP450 enzymes. Neither emtricitabine nor tenofovir inhibited in vitro drug metabolism mediated by any of the major human CYP450 isoforms involved in drug biotransformation. Also, emtricitabine did not inhibit uridine-5'-diphosphoglucuronyl transferase, the enzyme responsible for glucuronidation.

Elimination

Emtricitabine is primarily excreted by the kidneys with complete recovery of the dose achieved in urine (approximately 86%) and faeces (approximately 14%). Thirteen percent of the emtricitabine dose was recovered in urine as three metabolites. The systemic clearance of emtricitabine averaged 307 mL/min. Following oral administration, the elimination half-life of emtricitabine is approximately 10 hours.

Tenofovir is primarily excreted by the kidney by both filtration and an active tubular transport system with approximately 70-80% of the dose excreted unchanged in urine following intravenous administration. The apparent clearance of tenofovir averaged approximately 307 mL/min. Renal clearance has been estimated to be approximately 210 mL/min, which is in excess of the glomerular filtration rate. This indicates that active tubular secretion is an important part of the elimination of tenofovir. Following oral administration, the elimination half-life of tenofovir is approximately 12 to 18 hours.

Elderly

Pharmacokinetic studies have not been performed with emtricitabine or tenofovir (administered as tenofovir disoproxil) in the elderly (over 65 years of age).

Gender

Emtricitabine and tenofovir pharmacokinetics are similar in male and female patients.

Ethnicity

No clinically important pharmacokinetic difference due to ethnicity has been identified for emtricitabine. The pharmacokinetics of tenofovir (administered as tenofovir disoproxil) have not been specifically studied in different ethnic groups.

Paediatric population

Pharmacokinetic studies have not been performed with emtricitabine/tenofovir disoproxil in children and adolescents (under 18 years of age). Steady-state pharmacokinetics of tenofovir were evaluated in 8 HIV-1 infected adolescent patients (aged 12 to <18 years) with body weight ≥35 kg and in 23 HIV-1 infected children aged 2 to <12 years. Tenofovir exposure achieved in these paediatric patients receiving oral daily doses of tenofovir disoproxil 245 mg or 6.5 mg/kg body weight tenofovir disoproxil up to a maximum dose of 245 mg was similar to exposures achieved in adults receiving once-daily doses of tenofovir disoproxil 245 mg. Pharmacokinetic studies have not been performed with tenofovir disoproxil in children under 2 years. In general, the pharmacokinetics of emtricitabine in infants, children and adolescents (aged 4 months up to 18 years) are similar to those seen in adults.

The pharmacokinetics of emtricitabine and tenofovir (administered as tenofovir disoproxil) are expected to be similar in HIV-1 infected and uninfected adolescents based on the similar exposures of emtricitabine and tenofovir in HIV-1 infected adolescents and adults, and the similar exposures of emtricitabine and tenofovir in HIV-1 infected and uninfected adults.

Renal impairment

Limited pharmacokinetic data are available for emtricitabine and tenofovir after co-administration of separate preparations or as emtricitabine/tenofovir disoproxil in patients with renal impairment. Pharmacokinetic parameters were mainly determined following administration of single doses of emtricitabine 200 mg or tenofovir disoproxil 245 mg to non-HIV infected subjects with varying degrees of renal impairment. The degree of renal impairment was defined according to baseline creatinine clearance (CrCl) (normal renal function when CrCl >80 mL/min; mild impairment with CrCl = 50-79 mL/min; moderate impairment with CrCl = 30-49 mL/min and severe impairment with CrCl = 10-29 mL/min).

The mean (CV) emtricitabine drug exposure increased from 12 (25) µg•h/mL in subjects with normal renal function, to 20 (6%) µg•h/mL, 25 (23%) µg•h/mL and 34 (6%) µg•h/mL, in subjects with mild, moderate and severe renal impairment, respectively. The mean (CV) tenofovir drug exposure increased from 2,185 (12) ng•h/mL in subjects with normal renal function, to 3,064 (30%) ng•h/mL, 6,009 (42%) ng•h/mL and 15,985 (45%) ng•h/mL, in subjects with mild, moderate and severe renal impairment, respectively.

The increased dose interval for emtricitabine/tenofovir disoproxil in HIV-1 infected patients with moderate renal impairment is expected to result in higher peak plasma concentrations and lower Cmin levels as compared to patients with normal renal function. In subjects with end-stage renal disease (ESRD) requiring haemodialysis, between dialysis drug exposures substantially increased over 72 hours to 53 (19%) µg•h/mL of emtricitabine, and over 48 hours to 42,857 (29%) ng•h/mL of tenofovir.

A small clinical study was conducted to evaluate the safety, antiviral activity and pharmacokinetics of tenofovir disoproxil in combination with emtricitabine in HIV infected patients with renal impairment.

A subgroup of patients with baseline creatinine clearance between 50 and 60 mL/min, receiving once daily dosing, had a 2-4-fold increase in tenofovir exposure and worsening renal function.

The pharmacokinetics of emtricitabine and tenofovir (administered as tenofovir disoproxil) in paediatric patients with renal impairment have not been studied. No data are available to make dose recommendations.

Hepatic impairment

The pharmacokinetics of emtricitabine/tenofovir disoproxil have not been studied in subjects with hepatic impairment.

The pharmacokinetics of emtricitabine have not been studied in non-HBV infected subjects with varying degrees of hepatic insufficiency. In general, emtricitabine pharmacokinetics in HBV infected subjects were similar to those in healthy subjects and in HIV infected patients.

A single 245 mg dose of tenofovir disoproxil was administered to non-HIV infected subjects with varying degrees of hepatic impairment defined according to Child-Pugh-Turcotte (CPT) classification. Tenofovir pharmacokinetics were not substantially altered in subjects with hepatic impairment suggesting that no dose adjustment is required in these subjects. The mean (CV) tenofovir Cmax and AUC0-∞ values were 223 (34.8) ng/mL and 2,050 (50.8%) ng•h/mL, respectively, in normal subjects compared with 289 (46.0%) ng/mL and 2,310 (43.5%) ng•h/mL in subjects with moderate hepatic impairment, and 305 (24.8%) ng/mL and 2,740 (44.0%) ng•h/mL in subjects with severe hepatic impairment.

Preclinical safety data

Emtricitabine

Non-clinical data on emtricitabine reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential and toxicity to reproduction and development.

Tenofovir disoproxil

Non-clinical safety pharmacology studies on tenofovir disoproxil reveal no special hazard for humans. Repeated dose toxicity studies in rats, dogs and monkeys at exposure levels greater than or equal to clinical exposure levels and with possible relevance to clinical use include renal and bone toxicity and a decrease in serum phosphate concentration. Bone toxicity was diagnosed as osteomalacia (monkeys) and reduced BMD (rats and dogs). The bone toxicity in young adult rats and dogs occurred at exposures ≥5-fold the exposure in paediatric or adult patients; bone toxicity occurred in juvenile infected monkeys at very high exposures following subcutaneous dosing (≥40-fold the exposure in patients). Findings in the rat and monkey studies indicated that there was a substance-related decrease in intestinal absorption of phosphate with potential secondary reduction in BMD.

Genotoxicity studies revealed positive results in the in vitro mouse lymphoma assay, equivocal results in one of the strains used in the Ames test, and weakly positive results in an UDS test in primary rat hepatocytes. However, it was negative in an in vivo mouse bone marrow micronucleus assay.

Oral carcinogenicity studies in rats and mice only revealed a low incidence of duodenal tumours at an extremely high dose in mice. These tumours are unlikely to be of relevance to humans.

Reproductive toxicity studies in rats and rabbits showed no effects on mating, fertility, pregnancy or foetal parameters. However, tenofovir disoproxil reduced the viability index and weight of pups in a periand postnatal toxicity study at maternally toxic doses.

Combination of emtricitabine and tenofovir disoproxil

Genotoxicity and repeated dose toxicity studies of one month or less with the combination of these two components found no exacerbation of toxicological effects compared to studies with the separate components.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.