Tenofovir disoproxil

Chemical formula: C₉H₁₄N₅O₄P  Molecular mass: 519.448 g/mol  PubChem compound: 5481350

Mechanism of action

Tenofovir disoproxil fumarate is the fumarate salt of the prodrug tenofovir disoproxil. Tenofovir disoproxil is absorbed and converted to the active substance tenofovir, which is a nucleoside monophosphate (nucleotide) analogue. Tenofovir is then converted to the active metabolite, tenofovir diphosphate, an obligate chain terminator, by constitutively expressed cellular enzymes. Tenofovir diphosphate has an intracellular half-life of 10 hours in activated and 50 hours in resting peripheral blood mononuclear cells (PBMCs).

Tenofovir diphosphate inhibits HIV-1 reverse transcriptase and the HBV polymerase by direct binding competition with the natural deoxyribonucleotide substrate and, after incorporation into DNA, by DNA chain termination. Tenofovir diphosphate is a weak inhibitor of cellular polymerases α, β, and γ. At concentrations of up to 300 μmol/l, tenofovir has also shown no effect on the synthesis of mitochondrial DNA or the production of lactic acid in in vitro assays.

Pharmacodynamic properties

Data pertaining to HIV

HIV antiviral activity in vitro

The concentration of tenofovir required for 50% inhibition (EC50) of the wild-type laboratory strain HIV-1 IIIB is 1-6 μmol/l in lymphoid cell lines and 1.1 μmol/l against primary HIV-1 subtype B isolates in PBMCs. Tenofovir is also active against HIV-1 subtypes A, C, D, E, F, G, and O and against HIVBaL in primary monocyte/macrophage cells. Tenofovir shows activity in vitro against HIV-2, with an EC50 of 4.9 μmol/l in MT-4 cells.

Resistance

Strains of HIV-1 with reduced susceptibility to tenofovir and a K65R mutation in reverse transcriptase have been selected in vitro and in some patients. Tenofovir disoproxil should be avoided in antiretroviral-experienced patients with strains harbouring the K65R mutation. In addition, a K70E substitution in HIV-1 reverse transcriptase has been selected by tenofovir and results in low-level reduced susceptibility to tenofovir.

Clinical studies in treatment-experienced patients have assessed the anti-HIV activity of tenofovir disoproxil 245 mg against strains of HIV-1 with resistance to nucleoside inhibitors. The results indicate that patients whose HIV expressed 3 or more thymidine-analogue associated mutations (TAMs) that included either the M41L or L210W reverse transcriptase mutation showed reduced response to tenofovir disoproxil 245 mg therapy.

Data pertaining to HBV

HBV antiviral activity in vitro

The in vitro antiviral activity of tenofovir against HBV was assessed in the HepG2 2.2.15 cell line. The EC50 values for tenofovir were in the range of 0.14 to 1.5 μmol/l, with CC50 (50% cytotoxicity concentration) values >100 μmol/l.

Resistance

No HBV mutations associated with tenofovir disoproxil resistance have been identified. In cell based assays, HBV strains expressing the rtV173L, rtL180M, and rtM204I/V mutations associated with resistance to lamivudine and telbivudine showed a susceptibility to tenofovir ranging from 0.7- to 3.4-fold that of wild-type virus. HBV strains expressing the rtL180M, rtT184G, rtS202G/I, rtM204V and rtM250V mutations associated with resistance to entecavir showed a susceptibility to tenofovir ranging from 0.6- to 6.9-fold that of wild-type virus. HBV strains expressing the adefovir-associated resistance mutations rtA181V and rtN236T showed a susceptibility to tenofovir ranging from 2.9- to 10-fold that of wild-type virus. Viruses containing the rtA181T mutation remained susceptible to tenofovir with EC50 values 1.5-fold that of wild-type virus.

Pharmacokinetic properties

Tenofovir disoproxil is a water soluble ester prodrug which is rapidly converted in vivo to tenofovir and formaldehyde.

Tenofovir is converted intracellularly to tenofovir monophosphate and to the active component, tenofovir diphosphate.

Absorption

Following oral administration of tenofovir disoproxil to HIV infected patients, tenofovir disoproxil is rapidly absorbed and converted to tenofovir. Administration of multiple doses of tenofovir disoproxil with a meal to HIV infected patients resulted in mean (% CV) tenofovir Cmax, AUC, and Cmin values of 326 (36.6%) ng/ml, 3,324 (41.2%) ng·h/ml and 64.4 (39.4%) ng/ml, respectively. Maximum tenofovir concentrations are observed in serum within one hour of dosing in the fasted state and within two hours when taken with food. The oral bioavailability of tenofovir from tenofovir disoproxil in fasted patients was approximately 25%. Administration of tenofovir disoproxil with a high fat meal enhanced the oral bioavailability, with an increase in tenofovir AUC by approximately 40% and Cmax by approximately 14%. Following the first dose of tenofovir disoproxil in fed patients, the median Cmax in serum ranged from 213 to 375 ng/ml. However, administration of tenofovir disoproxil with a light meal did not have a significant effect on the pharmacokinetics of tenofovir.

Distribution

Following intravenous administration the steady-state volume of distribution of tenofovir was estimated to be approximately 800 ml/kg. After oral administration of tenofovir disoproxil, tenofovir is distributed to most tissues with the highest concentrations occurring in the kidney, liver and the intestinal contents (preclinical studies). In vitro protein binding of tenofovir to plasma or serum protein was less than 0.7 and 7.2%, respectively, over the tenofovir concentration range 0.01 to 25 μg/ml.

Biotransformation

In vitro studies have determined that neither tenofovir disoproxil nor tenofovir are substrates for the CYP450 enzymes. Moreover, at concentrations substantially higher (approximately 300-fold) than those observed in vivo, tenofovir did not inhibit in vitro drug metabolism mediated by any of the major human CYP450 isoforms involved in drug biotransformation (CYP3A4, CYP2D6, CYP2C9, CYP2E1, or CYP1A1/2). Tenofovir disoproxil at a concentration of 100 μmol/l had no effect on any of the CYP450 isoforms, except CYP1A1/2, where a small (6%) but statistically significant reduction in metabolism of CYP1A1/2 substrate was observed. Based on these data, it is unlikely that clinically significant interactions involving tenofovir disoproxil and medicinal products metabolised by CYP450 would occur.

Elimination

Tenofovir is primarily excreted by the kidney by both filtration and an active tubular transport system with approximately 70-80% of the dose excreted unchanged in urine following intravenous administration. Total clearance has been estimated to be approximately 230 ml/h/kg (approximately 300 ml/min). Renal clearance has been estimated to be approximately 160 ml/h/kg (approximately 210 ml/min), which is in excess of the glomerular filtration rate. This indicates that active tubular secretion is an important part of the elimination of tenofovir. Following oral administration the terminal half-life of tenofovir is approximately 12 to 18 hours.

Studies have established the pathway of active tubular secretion of tenofovir to be influx into proximal tubule cell by the human organic anion transporters (hOAT) 1 and 3 and efflux into the urine by the multidrug resistant protein 4 (MRP 4).

Linearity/non-linearity

The pharmacokinetics of tenofovir were independent of tenofovir disoproxil dose over the dose range 75 to 600 mg and were not affected by repeated dosing at any dose level.

Age

Pharmacokinetic studies have not been performed in the elderly (over 65 years of age).

Gender

Limited data on the pharmacokinetics of tenofovir in women indicate no major gender effect.

Ethnicity

Pharmacokinetics have not been specifically studied in different ethnic groups.

Paediatric population

HIV-1

Steady-state pharmacokinetics of tenofovir were evaluated in 8 HIV-1 infected adolescent patients (aged 12 to <18 years) with body weight ≥35 kg. Mean (± SD) Cmax and AUCtau are 0.38 ± 0.13 μg/ml and 3.39 ± 1.22 μg·h/ml, respectively. Tenofovir exposure achieved in adolescent patients receiving oral daily doses of tenofovir disoproxil 245 mg was similar to exposures achieved in adults receiving once-daily doses of tenofovir disoproxil 245 mg.

Chronic hepatitis B

Steady-state tenofovir exposure in HBV infected adolescent patients (12 to <18 years of age) receiving an oral daily dose of tenofovir disoproxil 245 mg was similar to exposures achieved in adults receiving once-daily doses of tenofovir disoproxil 245 mg.

Tenofovir exposure in HBV infected paediatric patients 2 to <12 years of age receiving an oral daily dose of tenofovir disoproxil 6.5 mg/kg of body weight (tablet or granules) up to a maximum dose of 245 mg was similar to exposures achieved in HIV-1 infected paediatric patients 2 to <12 years of age receiving a once daily dose of tenofovir disoproxil 6.5 mg/kg up to a maximum dose of tenofovir disoproxil 245 mg.

Pharmacokinetic studies have not been performed with tenofovir disoproxil 245 mg tablets in children under 12 years or with renal impairment.

Renal impairment

Pharmacokinetic parameters of tenofovir were determined following administration of a single dose of tenofovir disoproxil 245 mg to 40 non-HIV, non-HBV infected adult patients with varying degrees of renal impairment defined according to baseline creatinine clearance (CrCl) (normal renal function when CrCl>80 ml/min; mild with CrCl=50-79 ml/min; moderate with CrCl=30-49 ml/min and severe with CrCl=10-29 ml/min). Compared with patients with normal renal function, the mean (% CV) tenofovir exposure increased from 2,185 (12%) ng·h/ml in subjects with CrCl>80 ml/min to respectively 3,064 (30%) ng·h/ml, 6,009 (42%) ng·h/ml and 15,985 (45%) ng·h/ml in patients with mild, moderate and severe renal impairment. The dosing recommendations in patients with renal impairment, with increased dosing interval, are expected to result in higher peak plasma concentrations and lower Cmin levels in patients with renal impairment compared with patients with normal renal function. The clinical implications of this are unknown.

In patients with end-stage renal disease (ESRD) (CrCl<10 ml/min) requiring haemodialysis, between dialysis tenofovir concentrations substantially increased over 48 hours achieving a mean Cmax of 1,032 ng/ml and a mean AUC0-48h of 42,857 ng·h/ml.

It is recommended that the dosing interval for tenofovir disoproxil 245 mg is modified in adult patients with creatinine clearance <50 ml/min or in patients who already have ESRD and require dialysis.

The pharmacokinetics of tenofovir in non-haemodialysis patients with creatinine clearance <10 ml/min and in patients with ESRD managed by peritoneal or other forms of dialysis have not been studied.

The pharmacokinetics of tenofovir in paediatric patients with renal impairment have not been studied. No data are available to make dose recommendations.

Hepatic impairment

A single 245 mg dose of tenofovir disoproxil was administered to non-HIV, non-HBV infected adult patients with varying degrees of hepatic impairment defined according to Child-Pugh-Turcotte (CPT) classification. Tenofovir pharmacokinetics were not substantially altered in subjects with hepatic impairment suggesting that no dose adjustment is required in these subjects. The mean (% CV) tenofovir Cmax and AUC0-∞ values were 223 (34.8%) ng/ml and 2,050 (50.8%) ng·h/ml, respectively, in normal subjects compared with 289 (46.0%) ng/ml and 2,310 (43.5%) ng·h/ml in subjects with moderate hepatic impairment, and 305 (24.8%) ng/ml and 2,740 (44.0%) ng·h/ml in subjects with severe hepatic impairment.

Intracellular pharmacokinetics

In non-proliferating human peripheral blood mononuclear cells (PBMCs) the half-life of tenofovir diphosphate was found to be approximately 50 hours, whereas the half-life in phytohaemagglutininstimulated PBMCs was found to be approximately 10 hours.

Preclinical safety data

Non-clinical safety pharmacology studies reveal no special hazard for humans. Findings in repeated dose toxicity studies in rats, dogs and monkeys at exposure levels greater than or equal to clinical exposure levels and with possible relevance to clinical use include renal and bone toxicity and a decrease in serum phosphate concentration. Bone toxicity was diagnosed as osteomalacia (monkeys) and reduced bone mineral density (BMD) (rats and dogs). The bone toxicity in young adult rats and dogs occurred at exposures ≥5-fold the exposure in paediatric or adult patients; bone toxicity occurred in juvenile infected monkeys at very high exposures following subcutaneous dosing (≥40-fold the exposure in patients). Findings in the rat and monkey studies indicated that there was a substance-related decrease in intestinal absorption of phosphate with potential secondary reduction in BMD.

Genotoxicity studies revealed positive results in the in vitro mouse lymphoma assay, equivocal results in one of the strains used in the Ames test, and weakly positive results in an UDS test in primary rat hepatocytes. However, it was negative in an in vivo mouse bone marrow micronucleus assay.

Oral carcinogenicity studies in rats and mice only revealed a low incidence of duodenal tumours at an extremely high dose in mice. These tumours are unlikely to be of relevance to humans.

Reproductive studies in rats and rabbits showed no effects on mating, fertility, pregnancy or foetal parameters. However, tenofovir disoproxil reduced the viability index and weight of pups in peri-postnatal toxicity studies at maternally toxic doses.

Environmental Risk Assessment (ERA)

The active substance tenofovir disoproxil and its main transformation products are persistent in the environment.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.