Teriflunomide

Chemical formula: C₁₂H₉F₃N₂O₂  Molecular mass: 270.207 g/mol  PubChem compound: 54684141

Mechanism of action

Teriflunomide is an immunomodulatory agent with anti-inflammatory properties that selectively and reversibly inhibits the mitochondrial enzyme dihydroorotate dehydrogenase (DHO-DH), required for the de novo pyrimidine synthesis. As a consequence teriflunomide reduces the proliferation of dividing cells that need de novo synthesis of pyrimidine to expand. The exact mechanism by which teriflunomide exerts its therapeutic effect in MS is not fully understood, but this is mediated by a reduced number of lymphocytes.

Pharmacodynamic properties

Pharmacodynamic effects

Immune system

Effects on immune cell numbers in the blood: In the placebo-controlled studies, teriflunomide 14 mg once a day led to a mild mean reduction in lymphocyte count, of less than 0.3 × 109/l, which occurred over the first 3 months of treatment and levels were maintained until the end of the treatment.

Potential to prolong the QT interval

In a placebo-controlled thorough QT study performed in healthy subjects, teriflunomide at mean steady-state concentrations did not show any potential for prolonging the QTcF interval compared with placebo: the largest time matched mean difference between teriflunomide and placebo was 3.45 ms with the upper bound of the 90% CI being 6.45 ms.

Effect on renal tubular functions

In the placebo-controlled studies, mean decreases in serum uric acid at a range of 20 to 30% were observed in patients treated with teriflunomide compared to placebo. Mean decrease in serum phosphorus was around 10% in the teriflunomide group compared to placebo. These effects are considered to be related to increase in renal tubular excretion and not related to changes in glomerular functions.

Pharmacokinetic properties

Absorption

Median time to reach maximum plasma concentrations occurs between 1 to 4 hours post-dose following repeated oral administration of teriflunomide, with high bioavailability (approximately 100%).

Food does not have a clinically relevant effect on teriflunomide pharmacokinetics.

From the mean predicted pharmacokinetic parameters calculated from the population pharmacokinetic (PopPK) analysis using data from healthy volunteers and MS patients, there is a slow approach to steady- state concentration (i.e. approximately 100 days (3.5 months) to attain 95% of steady-state concentrations) and the estimated AUC accumulation ratio is approximately 34-fold.

Distribution

Teriflunomide is extensively bound to plasma protein (>99%), probably albumin and is mainly distributed in plasma. The volume of distribution is 11 l after a single intravenous (IV) administration. However, this is most likely an underestimation since extensive organ distribution was observed in rats.

Biotransformation

Teriflunomide is moderately metabolised and is the only component detected in plasma. The primary biotransformation pathway for teriflunomide is hydrolysis with oxidation being a minor pathway. Secondary pathways involve oxidation, N-acetylation and sulfate conjugation.

Elimination

Teriflunomide is excreted in the gastrointestinal tract mainly through the bile as unchanged medicinal product and most likely by direct secretion. Teriflunomide is a substrate of the efflux transporter BCRP, which could be involved in direct secretion. Over 21 days, 60.1% of the administered dose is excreted via feces (37.5%) and urine (22.6%). After the rapid elimination procedure with cholestyramine, an additional 23.1% was recovered (mostly in feces). Based on individual prediction of pharmacokinetic parameters using the PopPK model of teriflunomide in healthy volunteers and MS patients, median t1/2 was approximately 19 days after repeated doses of 14 mg. After a single intravenous administration, the total body clearance of teriflunomide is 30.5 ml/h.

Accelerated Elimination Procedure: Cholestyramine and activated charcoal

The elimination of teriflunomide from the circulation can be accelerated by administration of cholestyramine or activated charcoal, presumably by interrupting the reabsorption processes at the intestinal level. Teriflunomide concentrations measured during an 11-day procedure to accelerate teriflunomide elimination with either 8 g cholestyramine three times a day, 4 g cholestyramine three times a day or 50 g activated charcoal twice a day following cessation of teriflunomide treatment have shown that these regimens were effective in accelerating teriflunomide elimination, leading to more than 98% decrease in teriflunomide plasma concentrations, with cholestyramine being faster than charcoal. Following discontinuation of teriflunomide and the administration of cholestyramine 8 g three times a day, the plasma concentration of teriflunomide is reduced 52% at the end of day 1, 91% at the end of day 3, 99.2% at the end of day 7, and 99.9% at the completion of day 11. The choice between the 3 elimination procedures should depend on the patient’s tolerability. If cholestyramine 8 g three times a day is not well-tolerated, cholestyramine 4 g three times a day can be used. Alternatively, activated charcoal may also be used (the 11 days do not need to be consecutive unless there is a need to lower teriflunomide plasma concentration rapidly).

Linearity/non-linearity

Systemic exposure increases in a dose proportional manner after oral administration teriflunomide from 7 to 14 mg.

Characteristics in specific groups of patients

Gender, Elderly, Paediatric patients

Several sources of intrinsic variability were identified in healthy subjects and MS patients based on the PopPK analysis: age, body weight, gender, race, and albumin and bilirubin levels. Nevertheless, their impact remains limited (≤31%).

Hepatic impairment

Mild and moderate hepatic impairment had no impact on the pharmacokinetic of teriflunomide. Therefore no dose adjustment is anticipated in mild and moderate hepatic-impaired patients. However, teriflunomide is contraindicated in patients with severe hepatic impairment.

Renal impairment

Severe renal impairment had no impact on the pharmacokinetic of teriflunomide. Therefore no dose adjustment is anticipated in mild, moderate and severe renal-impaired patients.

Preclinical safety data

Repeated oral administration of teriflunomide to mice, rats and dogs for up to 3, 6, and 12 months, respectively, revealed that the major targets of toxicity were the bone marrow, lymphoid organs, oral cavity/ gastro intestinal tract, reproductive organs, and pancreas. Evidence of an oxidative effect on red blood cells was also observed. Anemia, decreased platelet counts and effects on the immune system, including leukopenia, lymphopenia and secondary infections, were related to the effects on the bone marrow and/or lymphoid organs. The majority of effects reflect the basic mode of action of the compound (inhibition of dividing cells). Animals are more sensitive to the pharmacology, and therefore toxicity, of teriflunomide than humans. As a result, toxicity in animals was found at exposures equivalent or below human therapeutic levels.

Teriflunomide was not mutagenic in vitro or clastogenic in vivo. Clastogenicity observed in vitro was considered to be an indirect effect related to nucleotide pool imbalance resulting from the pharmacology of DHO-DH inhibition. The minor metabolite TFMA (4-trifluoromethylaniline) caused mutagenicity and clastogenicity in vitro but not in vivo.

No evidence of carcinogenicity was observed in rats and mice.

Fertility was unaffected in rats despite adverse effects of teriflunomide on male reproductive organs, including reduced sperm count. There were no external malformations in the offspring of male rats administered teriflunomide prior to mating with untreated female rats. Teriflunomide was embryotoxic and teratogenic in rats and rabbits at doses in the human therapeutic range. Adverse effects on the offspring were also seen when teriflunomide was administered to pregnant rats during gestation and lactation. The risk of male-mediated embryo-fetal toxicity through teriflunomide treatment is considered low. The estimated female plasma exposure via the semen of a treated patient is expected to be 100 times lower than the plasma exposure after 14 mg of oral teriflunomide.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.