COUMADIN Tablet Ref.[10550] Active ingredients: Warfarin

Source: FDA, National Drug Code (US)  Revision Year: 2020 

4. Contraindications

COUMADIN is contraindicated in:

  • Pregnancy

COUMADIN is contraindicated in women who are pregnant except in pregnant women with mechanical heart valves, who are at high risk of thromboembolism [see Warnings and Precautions (5.7) and Use in Specific Populations (8.1)]. COUMADIN can cause fetal harm when administered to a pregnant woman. COUMADIN exposure during pregnancy causes a recognized pattern of major congenital malformations (warfarin embryopathy and fetotoxicity), fatal fetal hemorrhage, and an increased risk of spontaneous abortion and fetal mortality. If COUMADIN is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus [see Use in Specific Populations (8.1)].

COUMADIN is contraindicated in patients with:

  • Hemorrhagic tendencies or blood dyscrasias
  • Recent or contemplated surgery of the central nervous system or eye, or traumatic surgery resulting in large open surfaces [see Warnings and Precautions (5.8)]
  • Bleeding tendencies associated with:
    • Active ulceration or overt bleeding of the gastrointestinal, genitourinary, or respiratory tract
    • Central nervous system hemorrhage
    • Cerebral aneurysms, dissecting aorta
    • Pericarditis and pericardial effusions
    • Bacterial endocarditis
  • Threatened abortion, eclampsia, and preeclampsia
  • Unsupervised patients with conditions associated with potential high level of non-compliance
  • Spinal puncture and other diagnostic or therapeutic procedures with potential for uncontrollable bleeding
  • Hypersensitivity to warfarin or to any other components of this product (e.g., anaphylaxis) [see Adverse Reactions (6)]
  • Major regional or lumbar block anesthesia
  • Malignant hypertension

5. Warnings and Precautions

5.1 Hemorrhage

COUMADIN can cause major or fatal bleeding. Bleeding is more likely to occur within the first month. Risk factors for bleeding include high intensity of anticoagulation (INR >4.0), age greater than or equal to 65, history of highly variable INRs, history of gastrointestinal bleeding, hypertension, cerebrovascular disease, anemia, malignancy, trauma, renal impairment, certain genetic factors [see Clinical Pharmacology (12.5)], certain concomitant drugs [see Drug Interactions (7)], and long duration of warfarin therapy.

Perform regular monitoring of INR in all treated patients. Those at high risk of bleeding may benefit from more frequent INR monitoring, careful dose adjustment to desired INR, and a shortest duration of therapy appropriate for the clinical condition. However, maintenance of INR in the therapeutic range does not eliminate the risk of bleeding.

Drugs, dietary changes, and other factors affect INR levels achieved with COUMADIN therapy. Perform more frequent INR monitoring when starting or stopping other drugs, including botanicals, or when changing dosages of other drugs [see Drug Interactions (7)].

Instruct patients about prevention measures to minimize risk of bleeding and to report signs and symptoms of bleeding [see Patient Counseling Information (17)].

5.2 Tissue Necrosis

COUMADIN can cause necrosis and/or gangrene of skin and other tissues, which is an uncommon but serious risk (<0.1%). Necrosis may be associated with local thrombosis and usually appears within a few days of the start of COUMADIN therapy. In severe cases of necrosis, treatment through debridement or amputation of the affected tissue, limb, breast, or penis has been reported.

Careful clinical evaluation is required to determine whether necrosis is caused by an underlying disease. Although various treatments have been attempted, no treatment for necrosis has been considered uniformly effective. Discontinue COUMADIN therapy if necrosis occurs. Consider alternative drugs if continued anticoagulation therapy is necessary.

5.3 Calciphylaxis

COUMADIN can cause fatal and serious calciphylaxis or calcium uremic arteriolopathy, which has been reported in patients with and without end-stage renal disease. When calciphylaxis is diagnosed in these patients, discontinue COUMADIN and treat calciphylaxis as appropriate. Consider alternative anticoagulation therapy.

5.4 Acute Kidney Injury

In patients with altered glomerular integrity or with a history of kidney disease, acute kidney injury may occur with COUMADIN, possibly in relation to episodes of excessive anticoagulation and hematuria [see Use in Specific Populations (8.6)]. More frequent monitoring of anticoagulation is advised in patients with compromised renal function.

5.5 Systemic Atheroemboli and Cholesterol Microemboli

Anticoagulation therapy with COUMADIN may enhance the release of atheromatous plaque emboli. Systemic atheroemboli and cholesterol microemboli can present with a variety of signs and symptoms depending on the site of embolization. The most commonly involved visceral organs are the kidneys followed by the pancreas, spleen, and liver. Some cases have progressed to necrosis or death. A distinct syndrome resulting from microemboli to the feet is known as “purple toes syndrome”. Discontinue COUMADIN therapy if such phenomena are observed. Consider alternative drugs if continued anticoagulation therapy is necessary.

5.6 Limb Ischemia, Necrosis, and Gangrene in Patients with HIT and HITTS

Do not use COUMADIN as initial therapy in patients with heparin-induced thrombocytopenia (HIT) and with heparin-induced thrombocytopenia with thrombosis syndrome (HITTS). Cases of limb ischemia, necrosis, and gangrene have occurred in patients with HIT and HITTS when heparin treatment was discontinued and warfarin therapy was started or continued. In some patients, sequelae have included amputation of the involved area and/or death. Treatment with COUMADIN may be considered after the platelet count has normalized.

5.7 Use in Pregnant Women with Mechanical Heart Valves

COUMADIN can cause fetal harm when administered to a pregnant woman. While COUMADIN is contraindicated during pregnancy, the potential benefits of using COUMADIN may outweigh the risks for pregnant women with mechanical heart valves at high risk of thromboembolism. In those individual situations, the decision to initiate or continue COUMADIN should be reviewed with the patient, taking into consideration the specific risks and benefits pertaining to the individual patient’s medical situation, as well as the most current medical guidelines. COUMADIN exposure during pregnancy causes a recognized pattern of major congenital malformations (warfarin embryopathy and fetotoxicity), fatal fetal hemorrhage, and an increased risk of spontaneous abortion and fetal mortality. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus [see Use in Specific Populations (8.1)].

5.8 Other Clinical Settings with Increased Risks

In the following clinical settings, the risks of COUMADIN therapy may be increased:

  • Moderate to severe hepatic impairment
  • Infectious diseases or disturbances of intestinal flora (e.g., sprue, antibiotic therapy)
  • Use of an indwelling catheter
  • Severe to moderate hypertension
  • Deficiency in protein C-mediated anticoagulant response: COUMADIN reduces the synthesis of the naturally occurring anticoagulants, protein C and protein S. Hereditary or acquired deficiencies of protein C or its cofactor, protein S, have been associated with tissue necrosis following warfarin administration. Concomitant anticoagulation therapy with heparin for 5 to 7 days during initiation of therapy with COUMADIN may minimize the incidence of tissue necrosis in these patients.
  • Eye surgery: In cataract surgery, COUMADIN use was associated with a significant increase in minor complications of sharp needle and local anesthesia block but not associated with potentially sight-threatening operative hemorrhagic complications. As COUMADIN cessation or reduction may lead to serious thromboembolic complications, the decision to discontinue COUMADIN before a relatively less invasive and complex eye surgery, such as lens surgery, should be based upon the risks of anticoagulant therapy weighed against the benefits.
  • Polycythemia vera
  • Vasculitis
  • Diabetes mellitus

5.9 Endogenous Factors Affecting INR

The following factors may be responsible for increased INR response: diarrhea, hepatic disorders, poor nutritional state, steatorrhea, or vitamin K deficiency.

The following factors may be responsible for decreased INR response: increased vitamin K intake or hereditary warfarin resistance.

6. Adverse Reactions

The following serious adverse reactions to COUMADIN are discussed in greater detail in other sections of the labeling:

  • Hemorrhage [see Boxed Warning, Warnings and Precautions (5.1), and Overdosage (10)]
  • Tissue Necrosis [see Warnings and Precautions (5.2)]
  • Calciphylaxis [see Warnings and Precautions (5.3)]
  • Acute Kidney Injury [see Warnings and Precautions (5.4)]
  • Systemic Atheroemboli and Cholesterol Microemboli [see Warnings and Precautions (5.5)]
  • Limb Ischemia, Necrosis, and Gangrene in Patients with HIT and HITTS [see Warnings and Precautions (5.6)]
  • Other Clinical Settings with Increased Risks [see Warnings and Precautions (5.8)]

Other adverse reactions to COUMADIN include:

  • Immune system disorders: hypersensitivity/allergic reactions (including urticaria and anaphylactic reactions)
  • Vascular disorders: vasculitis
  • Hepatobiliary disorders: hepatitis, elevated liver enzymes. Cholestatic hepatitis has been associated with concomitant administration of COUMADIN and ticlopidine.
  • Gastrointestinal disorders: nausea, vomiting, diarrhea, taste perversion, abdominal pain, flatulence, bloating
  • Skin disorders: rash, dermatitis (including bullous eruptions), pruritus, alopecia
  • Respiratory disorders: tracheal or tracheobronchial calcification
  • General disorders: chills

7. Drug Interactions

7.1 General Information

Drugs may interact with COUMADIN through pharmacodynamic or pharmacokinetic mechanisms. Pharmacodynamic mechanisms for drug interactions with COUMADIN are synergism (impaired hemostasis, reduced clotting factor synthesis), competitive antagonism (vitamin K), and alteration of the physiologic control loop for vitamin K metabolism (hereditary resistance). Pharmacokinetic mechanisms for drug interactions with COUMADIN are mainly enzyme induction, enzyme inhibition, and reduced plasma protein binding. It is important to note that some drugs may interact by more than one mechanism.

More frequent INR monitoring should be performed when starting or stopping other drugs, including botanicals, or when changing dosages of other drugs, including drugs intended for short-term use (e.g., antibiotics, antifungals, corticosteroids) [see Boxed Warning].

Consult the labeling of all concurrently used drugs to obtain further information about interactions with COUMADIN or adverse reactions pertaining to bleeding.

7.2 CYP450 Interactions

CYP450 isozymes involved in the metabolism of warfarin include CYP2C9, 2C19, 2C8, 2C18, 1A2, and 3A4. The more potent warfarin S-enantiomer is metabolized by CYP2C9 while the R-enantiomer is metabolized by CYP1A2 and 3A4.

  • Inhibitors of CYP2C9, 1A2, and/or 3A4 have the potential to increase the effect (increase INR) of warfarin by increasing the exposure of warfarin.
  • Inducers of CYP2C9, 1A2, and/or 3A4 have the potential to decrease the effect (decrease INR) of warfarin by decreasing the exposure of warfarin.

Examples of inhibitors and inducers of CYP2C9, 1A2, and 3A4 are below in Table 2; however, this list should not be considered all-inclusive. Consult the labeling of all concurrently used drugs to obtain further information about CYP450 interaction potential. The CYP450 inhibition and induction potential should be considered when starting, stopping, or changing dose of concomitant medications. Closely monitor INR if a concomitant drug is a CYP2C9, 1A2, and/or 3A4 inhibitor or inducer.

Table 2. Examples of CYP450 Interactions with Warfarin:

EnzymeInhibitorsInducers
CYP2C9 amiodarone, capecitabine, cotrimoxazole, etravirine, fluconazole, fluvastatin, fluvoxamine, metronidazole, miconazole, oxandrolone, sulfinpyrazone, tigecycline, voriconazole, zafirlukast aprepitant, bosentan, carbamazepine, phenobarbital, rifampin
CYP1A2 acyclovir, allopurinol, caffeine, cimetidine, ciprofloxacin, disulfiram, enoxacin, famotidine, fluvoxamine, methoxsalen, mexiletine, norfloxacin, oral contraceptives, phenylpropanolamine, propafenone, propranolol, terbinafine, thiabendazole, ticlopidine, verapamil, zileuton montelukast, moricizine, omeprazole, phenobarbital, phenytoin, cigarette smoking
CYP3A4 alprazolam, amiodarone, amlodipine, amprenavir, aprepitant, atorvastatin, atazanavir, bicalutamide, cilostazol, cimetidine, ciprofloxacin, clarithromycin, conivaptan, cyclosporine, darunavir/ritonavir, diltiazem, erythromycin, fluconazole, fluoxetine, fluvoxamine, fosamprenavir, imatinib, indinavir, isoniazid, itraconazole, ketoconazole, lopinavir/ritonavir, nefazodone, nelfinavir, nilotinib, oral contraceptives, posaconazole, ranitidine, ranolazine, ritonavir, saquinavir, telithromycin, tipranavir, voriconazole, zileuton armodafinil, amprenavir, aprepitant, bosentan, carbamazepine, efavirenz, etravirine, modafinil, nafcillin, phenytoin, pioglitazone, prednisone, rifampin, rufinamide

7.3 Drugs that Increase Bleeding Risk

Examples of drugs known to increase the risk of bleeding are presented in Table 3. Because bleeding risk is increased when these drugs are used concomitantly with warfarin, closely monitor patients receiving any such drug with warfarin.

Table 3. Drugs that Can Increase the Risk of Bleeding:

Drug ClassSpecific Drugs
Anticoagulants argatroban, dabigatran, bivalirudin, desirudin, heparin, lepirudin
Antiplatelet Agents aspirin, cilostazol, clopidogrel, dipyridamole, prasugrel, ticlopidine
Nonsteroidal Anti-Inflammatory Agents celecoxib, diclofenac, diflunisal, fenoprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, mefenamic acid, naproxen, oxaprozin, piroxicam, sulindac
Serotonin Reuptake Inhibitors citalopram, desvenlafaxine, duloxetine, escitalopram, fluoxetine, fluvoxamine, milnacipran, paroxetine, sertraline, venlafaxine, vilazodone

7.4 Antibiotics and Antifungals

There have been reports of changes in INR in patients taking warfarin and antibiotics or antifungals, but clinical pharmacokinetic studies have not shown consistent effects of these agents on plasma concentrations of warfarin.

Closely monitor INR when starting or stopping any antibiotic or antifungal in patients taking warfarin.

7.5 Botanical (Herbal) Products and Foods

More frequent INR monitoring should be performed when starting or stopping botanicals.

Few adequate, well-controlled studies evaluating the potential for metabolic and/or pharmacologic interactions between botanicals and COUMADIN exist. Due to a lack of manufacturing standardization with botanical medicinal preparations, the amount of active ingredients may vary. This could further confound the ability to assess potential interactions and effects on anticoagulation.

Some botanicals may cause bleeding events when taken alone (e.g., garlic and Ginkgo biloba) and may have anticoagulant, antiplatelet, and/or fibrinolytic properties. These effects would be expected to be additive to the anticoagulant effects of COUMADIN. Conversely, some botanicals may decrease the effects of COUMADIN (e.g., co-enzyme Q10, St. John’s wort, ginseng). Some botanicals and foods can interact with COUMADIN through CYP450 interactions (e.g., echinacea, grapefruit juice, ginkgo, goldenseal, St. John’s wort).

The amount of vitamin K in food may affect therapy with COUMADIN. Advise patients taking COUMADIN to eat a normal, balanced diet maintaining a consistent amount of vitamin K. Patients taking COUMADIN should avoid drastic changes in dietary habits, such as eating large amounts of green leafy vegetables.

8.1. Pregnancy

Risk Summary

COUMADIN is contraindicated in women who are pregnant except in pregnant women with mechanical heart valves, who are at high risk of thromboembolism, and for whom the benefits of COUMADIN may outweigh the risks [see Warnings and Precautions (5.7)]. COUMADIN can cause fetal harm. Exposure to warfarin during the first trimester of pregnancy caused a pattern of congenital malformations in about 5% of exposed offspring. Because these data were not collected in adequate and well-controlled studies, this incidence of major birth defects is not an adequate basis for comparison to the estimated incidences in the control group or the U.S. general population and may not reflect the incidences observed in practice. Consider the benefits and risks of COUMADIN and possible risks to the fetus when prescribing COUMADIN to a pregnant woman.

Adverse outcomes in pregnancy occur regardless of the health of the mother or the use of medications. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.

Clinical Considerations

Fetal/Neonatal Adverse Reactions

In humans, warfarin crosses the placenta, and concentrations in fetal plasma approach the maternal values. Exposure to warfarin during the first trimester of pregnancy caused a pattern of congenital malformations in about 5% of exposed offspring. Warfarin embryopathy is characterized by nasal hypoplasia with or without stippled epiphyses (chondrodysplasia punctata) and growth retardation (including low birth weight). Central nervous system and eye abnormalities have also been reported, including dorsal midline dysplasia characterized by agenesis of the corpus callosum, Dandy-Walker malformation, midline cerebellar atrophy, and ventral midline dysplasia characterized by optic atrophy. Mental retardation, blindness, schizencephaly, microcephaly, hydrocephalus, and other adverse pregnancy outcomes have been reported following warfarin exposure during the second and third trimesters of pregnancy [see Contraindications (4)].

8.2. Lactation

Risk Summary

Warfarin was not present in human milk from mothers treated with warfarin from a limited published study. Because of the potential for serious adverse reactions, including bleeding in a breastfed infant, consider the developmental and health benefits of breastfeeding along with the mother’s clinical need for COUMADIN and any potential adverse effects on the breastfed infant from COUMADIN or from the underlying maternal condition before prescribing COUMADIN to a lactating woman.

Clinical Considerations

Monitor breastfeeding infants for bruising or bleeding.

Data

Human Data

Based on published data in 15 nursing mothers, warfarin was not detected in human milk. Among the 15 full-term newborns, 6 nursing infants had documented prothrombin times within the expected range. Prothrombin times were not obtained for the other 9 nursing infants. Effects in premature infants have not been evaluated.

8.3. Females and Males of Reproductive Potential

Pregnancy Testing

COUMADIN can cause fetal harm [see Use in Specific Populations (8.1)].

Verify the pregnancy status of females of reproductive potential prior to initiating COUMADIN therapy.

Contraception

Females

Advise females of reproductive potential to use effective contraception during treatment and for at least 1 month after the final dose of COUMADIN.

8.4. Pediatric Use

Adequate and well-controlled studies with COUMADIN have not been conducted in any pediatric population, and the optimum dosing, safety, and efficacy in pediatric patients is unknown. Pediatric use of COUMADIN is based on adult data and recommendations, and available limited pediatric data from observational studies and patient registries. Pediatric patients administered COUMADIN should avoid any activity or sport that may result in traumatic injury.

The developing hemostatic system in infants and children results in a changing physiology of thrombosis and response to anticoagulants. Dosing of warfarin in the pediatric population varies by patient age, with infants generally having the highest, and adolescents having the lowest milligram per kilogram dose requirements to maintain target INRs. Because of changing warfarin requirements due to age, concomitant medications, diet, and existing medical condition, target INR ranges may be difficult to achieve and maintain in pediatric patients, and more frequent INR determinations are recommended. Bleeding rates varied by patient population and clinical care center in pediatric observational studies and patient registries.

Infants and children receiving vitamin K-supplemented nutrition, including infant formulas, may be resistant to warfarin therapy, while human milk-fed infants may be sensitive to warfarin therapy.

8.5. Geriatric Use

Of the total number of patients receiving warfarin sodium in controlled clinical trials for which data were available for analysis, 1885 patients (24.4%) were 65 years and older, while 185 patients (2.4%) were 75 years and older. No overall differences in effectiveness or safety were observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

Patients 60 years or older appear to exhibit greater than expected INR response to the anticoagulant effects of warfarin [see Clinical Pharmacology (12.3)]. COUMADIN is contraindicated in any unsupervised patient with senility. Conduct more frequent monitoring for bleeding with administration of COUMADIN to elderly patients in any situation or with any physical condition where added risk of hemorrhage is present. Consider lower initiation and maintenance doses of COUMADIN in elderly patients [see Dosage and Administration (2.2, 2.3)].

8.6. Renal Impairment

Renal clearance is considered to be a minor determinant of anticoagulant response to warfarin. No dosage adjustment is necessary for patients with renal impairment. Instruct patients with renal impairment taking warfarin to monitor their INR more frequently [see Warnings and Precautions (5.4)].

8.7. Hepatic Impairment

Hepatic impairment can potentiate the response to warfarin through impaired synthesis of clotting factors and decreased metabolism of warfarin. Conduct more frequent monitoring for bleeding when using COUMADIN in these patients.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.