GLUCOSE 5% BP Solution for infusion Ref.[8099] Active ingredients: Glucose

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2019  Publisher: Baxter Healthcare Ltd., Caxton Way, Thetford, Norfolk, IP24 3SE, United Kingdom

Contraindications

The solution is contraindicated in case of uncompensated diabetes, other known glucose intolerances (such as metabolic stress situations), hyperosmolar coma, hyperglycaemia, hyperlactataemia.

Hypersensitivity to the active substance. See sections 4.4 and 4.8 for corn allergies.

Special warnings and precautions for use

Glucose intravenous infusions are usually isotonic solutions. In the body, however, glucose containing fluids can become extremely physiologically hypotonic due to rapid glucose metabolization (see section 4.2).

Dilution and other effects on serum electrolytes

Depending on the tonicity of the solution, the volume and rate of infusion and depending on a patient’s underlying clinical condition and capability to metabolize glucose, intravenous administration of glucose can cause:.

  • Hyperosmolality, osmotic diuresis and dehydration
  • Hypoosmolality
  • Electrolyte disturbances such as
    • hypo- or hyperosmotic hyponatraemia (see below),
    • hypokalaemia,
    • hypophosphataemia,
    • hypomagnesaemia,
    • overhydration/hypervolaemia and, for example, congested states, including pulmonary congestion and oedema.

The above effects do not only result from the administration of electrolyte-free fluid but also from glucose administration.

Hyponatraemia

Patients with non-osmotic vasopressin release (e.g. in acute illness, pain, post-operative stress, infections, burns, and CNS diseases), patients with heart-, liver- and kidney diseases and patients exposed to vasopressin agonists (see section 4.5) are at particular risk of acute hyponatraemia upon infusion of hypotonic fluids.

Acute hyponatraemia can lead to acute hyponatraemic encephalopathy (brain oedema) characterized by headache, nausea, seizures, lethargy and vomiting. Patients with brain oedema are at particular risk of severe, irreversible and life-threatening brain injury.

Children, women in the fertile age and patients with reduced cerebral compliance (e.g. meningitis, intracranial bleeding, and cerebral contusion) are at particular risk of the severe and life-threatening brain swelling caused by acute hyponatraemia.

Clinical evaluation and periodic laboratory determinations may be necessary to monitor changes in fluid balance, electrolyte concentrations, and acid-base balance during prolonged parenteral therapy or whenever the condition of the patient or the rate of administration warrants such evaluation.

Particular caution is advised in patients at increased risk of water and electrolyte disturbances that could be aggravated by increased free water load, hyperglycaemia or possibly required insulin administration (see below).

Hyperglycaemia

Rapid administration of glucose solutions may produce substantial hyperglycaemia and a hyperosmolar syndrome.

If hyperglycaemia occurs, rate of infusion should be adjusted and/or insulin administered

If necessary, provide parenteral supplements in potassium.

Intravenous Glucose 5% should be administered with caution in patients with, for example:

  • impaired glucose tolerance (such as in diabetes mellitus, renal failure, or in the presence of sepsis, trauma, or shock),
  • severe malnutrition (risk of precipitating a refeeding syndrome – see below),
  • thiamine deficiency, e.g., in patients with chronic alcoholism (risk of severe lactic acidosis due to impaired oxidative metabolization of pyruvate),
  • patients with ischemic stroke or severe traumatic brain injury. Avoid infusion within the first 24 hours following head trauma. Monitor blood glucose closely as early hyperglycaemia has been associated with poor outcomes in patients with severe traumatic brain injury.
  • newborns

Effects on Insulin Secretion

Prolonged intravenous administration of glucose and associated hyperglycaemia may result in decreased rates of glucose-stimulated insulin secretion.

Hypersensitivity Reactions

Hypersensitivity/infusion reactions, including anaphylactic/anaphylactoid reactions, have been reported with Glucose solutions (see section 4.8). Solutions containing glucose should therefore be used with caution, if at all, in patients with known allergy to corn or corn products (see section 4.3).

The infusion must be stopped immediately if any signs or symptoms of a suspected hypersensitivity reaction develop. Appropriate therapeutic countermeasures must be instituted as clinically indicated.

Refeeding syndrome

Refeeding severely undernourished patients may result in the refeeding syndrome that is characterized by the shift of potassium, phosphorus, and magnesium intracellularly as the patient becomes anabolic. Thiamine deficiency and fluid retention may also develop. Careful monitoring and slowly increasing nutrient intakes while avoiding overfeeding can prevent these complications.

Paediatric population

The infusion rate and volume depends on the age, weight, clinical and metabolic conditions of the patient, concomitant therapy, and should be determined by a consulting physician experienced in paediatric intravenous fluid therapy.

In order to avoid potentially fatal over infusion of intravenous fluids to the neonate, special attention needs to be paid to the method of administration. When using a syringe pump to administer intravenous fluids or medicines to neonates, a bag of fluid should not be left connected to the syringe.

When using an infusion pump all clamps on the intravenous administration set must be closed before removing the administration set from the pump or switching the pump off. This is required regardless of whether the administration set has an anti free flow device.

The intravenous infusion device and administration equipment must be frequently monitored.

Paediatric glycaemia-related issues

Newborns – especially those born premature and with low birth weight – are at increased risk of developing hypo- or hyperglycaemia and therefore need close monitoring during treatment with intravenous glucose solutions to ensure adequate glycaemic control in order to avoid potential long term adverse effects. Hypoglycaemia in the newborn can cause prolonged seizures, coma and cerebral injury. Hyperglycaemia has been associated with intraventricular haemorrhage, late onset bacterial and fungal infection, retinopathy of prematurity, necrotizing enterocolitis, bronchopulmonary dysplasia, prolonged length of hospital stay, and death.

Paediatric hyponatraemia-related issues

Children (including neonates and older children) are at increased risk of developing hypoosmotic hyponatraemia as well as for developing hyponatraemic encephalopathy.

Plasma electrolyte concentrations should be closely monitored in the paediatric population.

Rapid correction of hypoosmotic hyponatraemia is potentially dangerous (risk of serious neurologic complications).

Dosage, rate, and duration of administration should be determined by a physician experienced in paediatric intravenous fluid therapy.

Geriatric Use

When selecting the type of infusion solution and the volume/rate of infusion for a geriatric patient, consider that geriatric patients are generally more likely to have cardiac, renal, hepatic, and other diseases or concomitant drug therapy.

Blood

Glucose 5% (an aqueous, i.e. electrolyte-free glucose solution) should not be administered simultaneously with, before or after an administration of blood through the same infusion equipment, because haemolysis and pseudoagglutination can occur.

Adding other medication or using an incorrect administration technique might cause the appearance of fever reactions due to the possible introduction of pyrogens. In case of adverse reaction, infusion must be stopped immediately.

Risk of Air Embolism

Do not use plastic containers in series connections. Such use could result in air embolism due to residual air being drawn from the primary container before the administration of the fluid from the secondary container is completed.

Pressurizing intravenous solutions contained in flexible plastic containers to increase flow rates can result in air embolism if the residual air in the container is not fully evacuated prior to administration.

Use of a vented intravenous administration set with the vent in the open position could result in air embolism. Vented intravenous administration sets with the vent in the open position should not be used with flexible plastic containers.

Interaction with other medicinal products and other forms of interaction

Both the glycaemic effects of Glucose 5% and its effects on water and electrolyte balance should be taken into account when using Glucose 5% in patients treated with other substances that affect glycaemic control, or fluid and/or electrolyte balance.

Concomitant administration of catecholamines and steroids decreases the glucose up-take.

Drugs leading to an increased vasopressin effect

The below listed drugs increase the vasopressin effect, leading to reduced renal electrolyte free water excretion and increase the risk of hospital acquired hyponatraemia following inappropriately balanced treatment with i.v. fluids (see sections 4.2, 4.4 and 4.8).

  • Drugs stimulating vasopressin release, e.g.: Chlorpropamide, clofibrate, carbamazepine, vincristine, selective serotonin reuptake inhibitors, 3.4-methylenedioxy-N-methamphetamine, ifosfamide, antipsychotics, narcotics
  • Drugs potentiating vasopressin action, e.g.: Chlorpropamide, NSAIDs, cyclophosphamide
  • Vasopressin analogues, e.g.: Desmopressin, oxytocin, terlipressin

Other medicinal products increasing the risk of hyponatraemia also include diuretics in general and antiepileptics such as oxcarbazepine.

No interaction studies have been performed.

Fertility, pregnancy and lactation

When a medicinal product is added, the nature of the drug and its use during pregnancy and lactation have to be considered separately.

Intrapartum maternal intravenous glucose infusion may result in foetal insulin production, with an associated risk of foetal hyperglycaemia and metabolic acidosis as well as rebound hypoglycaemia in the neonate.

Pregnancy

Glucose solution can be used during pregnancy. However, caution should be exercised when glucose solution is used intrapartum.

Glucose 5% should be administrated with special caution for pregnant women during labour particularly if administered in combination with oxytocin due to the risk of hyponatraemia (see section 4.4, 4.5 and 4.8).

Fertility

There are no adequate data of the effect of Glucose 5% on fertility. However, no effect on fertility is expected.

Lactation

There are no adequate data of using Glucose solution during lactation. However, no effect on lactation is expected. Glucose 5% can be used during lactation.

Effects on ability to drive and use machines

None known.

Undesirable effects

Undesirable effects which occurred in patients treated with Glucose 5% from the post-marketing experience are tabulated below.

The adverse drug reactions listed in this section are given following the recommended frequency convention: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000); and not known (cannot be estimated from the available data).

Immune system disorders

Not known: Anaphylactic reaction*, Hypersensitivity*

Metabolism and nutrition disorders

Not known: Electrolyte imbalance, Hypokalaemia, Hypomagnesaemia, Hypophosphatemia, Hyperglycaemia, Dehydration, Hypervolaemia, Hospital acquired hyponatraemia**

Nervous system disorders

Not known: Hyponatraemic encephalopathy**

Skin and subcutaneous tissue disorders

Not known: Rash

Vascular disorders

Not known: Venous thrombosis, Phlebitis

Renal and urinary disorders

Not known: Polyuria

General disorders and administration site conditions

Not known: Chills*, Pyrexia*, Infusion site infection, Infusion site irritation for example erythema, Extravasation, Local reaction, Pain localised

* Potential manifestation in patients with allergy to corn, see section 4.4.
** Hospital acquired hyponatraemia may cause irreversible brain injury and death due to development of acute hyponatraemic encephalopathy (see sections 4.2 and 4.4).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme, Website: www.mhra.gov.uk/yellowcard.

Incompatibilities

As with all parenteral solutions compatibility of the additives with the solution must be assessed before addition.

It is the responsibility of the physician to judge the incompatibility of an additive medication with the Glucose 5% solution by checking for eventual colour change and/or eventual precipitate, insoluble complexes or crystals apparition. The Instructions for Use of the medication to be added must be consulted.

Before adding a drug, verify it is soluble and stable in water at the pH of Glucose 5%.

When a compatible medication is added to the Glucose 5%, the solution must be administered immediately.

Those additives known to be incompatible should not be used.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.