RANEXA Prolonged-release tablet Ref.[7346] Active ingredients: Ranolazine

Source: European Medicines Agency (EU)  Revision Year: 2019  Publisher: Menarini International Operations Luxembourg S.A., 1, Avenue de la Gare, L-1611 Luxembourg, Luxembourg

Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Severe renal impairment (creatinine clearance <30 ml/min) (see sections 4.2 and 5.2).

Moderate or severe hepatic impairment (see sections 4.2 and 5.2).

Concomitant administration of potent CYP3A4 inhibitors (e.g. itraconazole, ketoconazole, voriconazol, posaconazol, HIV protease inhibitors, clarithromycin, telithromycin, nefazodone) (see sections 4.2 and 4.5).

Concomitant administration of Class Ia (e.g. quinidine) or Class III (e.g. dofetilide, sotalol) antiarrhythmics other than amiodarone.

Special warnings and precautions for use

Caution should be exercised when prescribing or uptitrating ranolazine to patients in whom an increased exposure is expected:

  • Concomitant administration of moderate CYP3A4 inhibitors (see sections 4.2 and 4.5).
  • Concomitant administration of P-gp inhibitors (see sections 4.2 and 4.5).
  • Mild hepatic impairment (see sections 4.2 and 5.2).
  • Mild to moderate renal impairment (creatinine clearance 30–80 ml/min) (see sections 4.2, 4.8, and 5.2).
  • Elderly (see sections 4.2, 4.8, and 5.2).
  • Patients with low weight (≤60 kg) (see sections 4.2, 4.8, and 5.2).
  • Patients with moderate to severe CHF (NYHA Class III–IV) (see sections 4.2 and 5.2).

In patients with a combination of these factors, additional exposure increases are expected. Dose- dependent side effects are likely to occur. If Ranexa is used in patients with a combination of several of these factors, monitoring of adverse events should be frequent, the dose reduced, and treatment discontinued, if needed.

The risk for increased exposure leading to adverse events in these different subgroups is higher in patients lacking CYP2D6 activity (poor metabolisers, PM) than subjects with CYP2D6 metabolising capacity (extensive metabolisers, EM) (see section 5.2). The above precautions are based on the risk in a CYP2D6 PM patient, and are needed when the CYP2D6 status is unknown. There is a lower need for precautions in patients with CYP2D6 EM status. If the CYP2D6 status of the patient has been determined (e.g. by genotyping) or is previously known to be EM, Ranexa can be used with caution in these patients when they have a combination of several of the above risk factors.

QT prolongation

Ranolazine blocks I Kr and prolongs the QTc interval in a dose-related manner. A population-based analysis of combined data from patients and healthy volunteers demonstrated that the slope of the plasma concentration-QTc relationship was estimated to be 2.4 msec per 1000 ng/ml, which is approximately equal to a 2- to 7-msec increase over the plasma concentration range for ranolazine 500 to 1000 mg twice daily. Therefore, caution should be observed when treating patients with a history of congenital or a family history of long QT syndrome, in patients with known acquired QT interval prolongation, and in patients treated with drugs affecting the QTc interval (see section 4.5 also).

Drug-drug interactions

Co-administration with CYP3A4 inducers is expected to lead to lack of efficacy. Ranexa should not be used in patients treated with CYP3A4 inducers (e.g. rifampicin, phenytoin, phenobarbital, carbamazepine, St. John’s Wort) (see section 4.5).

Renal impairment

Renal function decreases with age and it is therefore important to check renal function at regular intervals during treatment with ranolazine (see sections 4.2, 4.3, 4.8, and 5.2).

Sodium

This medicine contains less than 1 mmol sodium (23 mg) per prolonged-release tablet, that is to say essentially ‘sodium-free’.

Interaction with other medicinal products and other forms of interaction

Effects of other medicinal products on ranolazine

CYP3A4 or P-gp inhibitors

Ranolazine is a substrate of cytochrome CYP3A4. Inhibitors of CYP3A4 increase plasma concentrations of ranolazine. The potential for dose-related adverse events (e.g. nausea, dizziness) may also increase with increased plasma concentrations. Concomitant treatment with ketoconazole 200 mg twice daily increased the AUC of ranolazine by 3.0- to 3.9-fold during ranolazine treatment. Combining ranolazine with potent CYP3A4 inhibitors (e.g. itraconazole, ketoconazole, voriconazole, posaconazole, HIV protease inhibitors, clarithromycin, telithromycin, nefazodone) is contraindicated (see section 4.3). Grapefruit juice is also a potent CYP3A4 inhibitor.

Diltiazem (180 to 360 mg once daily), a moderately potent CYP3A4 inhibitor, causes dose-dependent increases in average ranolazine steady-state concentrations of 1.5- to 2.4-fold. Careful dose titration of Ranexa is recommended in patients treated with diltiazem and other moderately potent CYP3A4 inhibitors (e.g. erythromycin, fluconazole). Down-titration of Ranexa may be required (see sections 4.2 and 4.4).

Ranolazine is a substrate for P-gp. Inhibitors of P-gp (e.g. ciclosporin, verapamil) increase plasma levels of ranolazine. Verapamil (120 mg three times daily) increases ranolazine steady-state concentrations 2.2-fold. Careful dose titration of Ranexa is recommended in patients treated with P-gp inhibitors. Down-titration of Ranexa may be required (see sections 4.2 and 4.4).

CYP3A4 inducers

Rifampicin (600 mg once daily) decreases ranolazine steady-state concentrations by approximately 95%. Initiation of treatment with Ranexa should be avoided during administration of inducers of CYP3A4 (e.g. rifampicin, phenytoin, phenobarbital, carbamazepine, St. John’s Wort) (see section 4.4).

CYP2D6 inhibitors

Ranolazine is partially metabolised by CYP2D6; therefore, inhibitors of this enzyme may increase plasma concentrations of ranolazine. The potent CYP2D6 inhibitor paroxetine, at a dose of 20 mg once daily, increased steady-state plasma concentrations of ranolazine 1000 mg twice daily by an average of 1.2-fold. No dose adjustment is required. At the dose level 500 mg twice daily, co-administration of a potent inhibitor of CYP2D6 could result in an increase in ranolazine AUC of about 62%.

Effects of ranolazine on other medicinal products

Ranolazine is a moderate to potent inhibitor of P-gp and a mild inhibitor of CYP3A4, and may increase plasma concentrations of P-gp or CYP3A4 substrates. Tissue distribution of drugs which are transported by P-gp may be increased.

Dose adjustment of sensitive CYP3A4 substrates (e.g. simvastatin, lovastatin) and CYP3A4 substrates with a narrow therapeutic range (e.g. ciclosporin, tacrolimus, sirolimus, everolimus) may be required as RANEXA may increase plasma concentrations of these drugs.

Available data suggest that ranolazine is a mild inhibitor of CYP2D6. Ranexa 750 mg twice daily increased plasma concentrations of metoprolol by 1.8-fold. Therefore the exposure to metoprolol or other CYP2D6 substrates (e.g. propafenone and flecainide or, to a lesser extent, tricyclic antidepressants and antipsychotics) may be increased during co-administration with Ranexa, and lower doses of these medicinal products may be required.

The potential for inhibition of CYP2B6 has not been evaluated. Caution is advised during co-administration with CYP2B6 substrates (e.g. bupropion, efavirenz, cyclophosphamide).

Digoxin

An increase in plasma digoxin concentrations by an average of 1.5-fold has been reported when Ranexa and digoxin are co-administered. Therefore, digoxin levels should be monitored following initiation and termination of Ranexa therapy.

Simvastatin

Simvastatin metabolism and clearance are highly dependent on CYP3A4. Ranexa 1000 mg twice daily increased plasma concentrations of simvastatin lactone, simvastatin acid by about 2 fold. Rhabdomyolysis has been associated with high doses of simvastatin and cases of rhabdomyolysis have been observed in patients receiving Ranexa and simvastatin, in postmarketing experience. Limit the dose of simvastatin to 20 mg once daily in patients taking any dose of Ranexa.

Atorvastatin

Ranexa 1000 mg twice daily increased Cmax and AUC of atorvastatin 80 mg once daily by 1.4- and 1.3 -fold, respectively and changed the Cmax and AUC of atorvastatin metabolites less than 35%. Dose limitation of atorvastatin and appropriate clinical monitoring may be considered when taking Ranexa.

Dose limitation of other statins, metabolised by CYP3A4 (e.g. lovastatin), may be considered when taking Ranexa.

Tacrolimus, ciclosporin, sirolimus, everolimus

Increased plasma concentrations of tacrolimus, a CYP3A4 substrate, have been observed in patients after ranolazine administration. It is recommended that tacrolimus blood levels are monitored when co-administering Ranexa and tacrolimus and that tacrolimus dosage is adjusted accordingly. This is also recommended for other CYP3A4 substrates with a narrow therapeutic range (e.g. ciclosporin, sirolimus, everolimus).

Drugs transported by the Organic Cation Transporter-2 (OCT2)

Plasma exposure of metformin (1000 mg twice daily) increased 1.4- and 1.8-fold in subjects with type 2 diabetes mellitus when co- administered with RANEXA 500 mg and 1000 mg twice daily respectively. The exposure of other OCT2 substrates, including but not limited to pindolol and varenicline, may be affected to a similar degree.

There is a theoretical risk that concomitant treatment of ranolazine with other drugs known to prolong the QTc interval may give rise to a pharmacodynamic interaction and increase the possible risk of ventricular arrhythmias. Examples of such drugs include certain antihistamines (e.g. terfenadine, astemizole, mizolastine), certain antiarrhythmics (e.g. quinidine, disopyramide, procainamide), erythromycin, and tricyclic antidepressants (e.g. imipramine, doxepin, amitriptyline).

Fertility, pregnancy and lactation

Pregnancy

There are limited amount of data from the use of ranolazine in pregnant women. Studies in animals showed embryo toxicity (see Section 5.3). The potential risk for humans is unknown. Ranexa should not be used during pregnancy unless clearly necessary.

Breast-feeding

It is unknown whether ranolazine is excreted in human breast milk. Available pharmacodynamic/toxicological data in rats have shown excretion of ranolazine in milk (for details see Section 5.3). A risk to the suckling child cannot be excluded. Ranexa should not be used during breast-feeding.

Fertility

In animals, reproduction studies indicated no adverse effects on fertility (see section 5.3). The effect of ranolazine on human fertility is unknown.

Effects on ability to drive and use machines

No studies on the effects of Ranexa on the ability to drive and use machines have been performed. Ranexa may cause dizziness, blurred vision, diplopia, confusional state, coordination abnormal, hallucination (see section 4.8), which may affect the ability to drive and use machines.

Undesirable effects

Undesirable effects in patients receiving Ranexa are generally mild to moderate in severity and often develop within the first 2 weeks of treatment. These were reported during the Phase 3 clinical development programme, which included a total of 1,030 chronic angina patients treated with Ranexa.

The adverse events, considered to be at least possibly related to treatment, are listed below by body system, organ class, and absolute frequency. Frequencies are defined as very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), and very rare (<1/10,000).

Metabolism and nutrition disorders

Uncommon: anorexia, decreased appetite, dehydration.

Rare: hyponatremia

Psychiatric disorders

Uncommon: anxiety, insomnia, confusional state, hallucination.

Rare: disorientation.

Nervous system disorders

Common: dizziness, headache.

Uncommon: lethargy, syncope, hypoaesthesia, somnolence, tremor, postural dizziness, paresthesia.

Rare: amnesia, depressed level of consciousness, loss of consciousness, coordination abnormal, gait disturbance, parosmia.

Eye disorders

Uncommon: blurred vision, visual disturbance, diplopia.

Ear and labyrinth disorders

Uncommon: vertigo, tinnitus.

Rare: impaired hearing.

Vascular disorders

Uncommon: hot flush, hypotension.

Rare: peripheral coldness, orthostatic hypotension.

Respiratory, thoracic, and mediastinal disorders

Uncommon: dyspnoea, cough, epistaxis.

Rare: throat tightness.

Gastrointestinal disorders

Common: constipation, vomiting, nausea.

Uncommon: abdominal pain, dry mouth, dyspepsia, flatulence, stomach discomfort.

Rare: pancreatitis, erosive duodenitis, oral hypoaesthesia.

Skin and subcutaneous tissue disorders

Uncommon: pruritus, hyperhydrosis.

Rare: angioedema, allergic dermatitis, urticaria, cold sweat, rash.

Musculoskeletal and connective tissue disorders

Uncommon: pain in extremity, muscle cramp, joint swelling, muscular weakness.

Renal and urinary disorders

Uncommon: dysuria, haematuria, chromaturia.

Rare: acute renal failure, urinary retention.

Reproductive system and breast disorders

Rare: erectile dysfunction.

General disorders and administration site conditions

Common: asthenia.

Uncommon: fatigue, peripheral oedema.

Investigations

Uncommon: increased blood creatinine, increased blood urea, prolonged QT corrected interval, increased platelet or white blood cell count, decreased weight.

Rare: elevated levels of hepatic enzyme.

The adverse event profile was generally similar in the MERLIN-TIMI 36 study. In this long term study, acute renal failure was also reported with an incidence less than 1% in placebo and ranolazine patients. Evaluations in patients who may be considered at higher risk of adverse events when treated with other antianginal medicinal products, e.g. patients with diabetes, Class I and II heart failure, or obstructive airway disease, confirmed that these conditions were not associated with clinically meaningful increases in the incidence of adverse events.

An increased incidence of adverse events was seen among ranolazine treated patients in the RIVER-PCI trial (see section 5.1) where patients with incomplete revascularization post-PCI were given ranolazine up to 1,000 mg twice daily or placebo for approximately 70 weeks. In this study, there was a higher reporting rate for congestive heart failure in the ranolazine group (2.2% vs 1.0% in placebo). Also, transient ischemic attack occurred more frequently in patients treated with ranolazine 1,000 mg twice daily compared with placebo (1.0% vs 0.2%, respectively); however, the incidence of stroke was similar between treatment groups (ranolazine 1.7% vs placebo 1.5%).

Elderly, renal impairment, and low weight

In general, adverse events occurred more frequently among elderly patients and patients with renal impairment; however, the types of events in these subgroups were similar to those observed in the general population. Of the most commonly reported, the following events occurred more often with Ranexa (placebo-corrected frequencies) in elderly (≥75 years of age) than younger patients (<75 years of age): constipation (8% versus 5%), nausea (6% versus 3%), hypotension (5% versus 1%), and vomiting (4% versus 1%).

In patients with mild or moderate renal impairment (creatinine clearance ≥30–80 ml/min) compared to those with normal renal function (creatinine clearance >80 ml/min), the most commonly reported events and their placebo-corrected frequencies included: constipation (8% versus 4%), dizziness (7% versus 5%), and nausea (4% versus 2%).

In general, the type and frequency of adverse events reported in patients with low body weight (≤60 kg) were similar to those of patients with higher weight (>60 kg); however, the placebo-corrected frequencies of the following common adverse events were higher in low body weight than heavier patients: nausea (14% versus 2%), vomiting (6% versus 1%), and hypotension (4% versus 2%).

Laboratory findings

Small, clinically insignificant, reversible elevations in serum creatinine levels have been observed in healthy subjects and patients treated with Ranexa. There was no renal toxicity related to these findings. A renal function study in healthy volunteers demonstrated a reduction in creatinine clearance with no change in glomerular filtration rate consistent with inhibition of renal tubular secretion of creatinine.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

Incompatibilities

Not applicable.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.