XYREM Solution Ref.[11068] Active ingredients: Sodium oxybate

Source: FDA, National Drug Code (US)  Revision Year: 2020 

12.1. Mechanism of Action

Xyrem is a CNS depressant. The mechanism of action of Xyrem in the treatment of narcolepsy is unknown. Sodium oxybate is the sodium salt of gamma-hydroxybutyrate (GHB), an endogenous compound and metabolite of the neurotransmitter GABA. It is hypothesized that the therapeutic effects of Xyrem on cataplexy and excessive daytime sleepiness are mediated through GABAB actions at noradrenergic and dopaminergic neurons, as well as at thalamocortical neurons.

12.3. Pharmacokinetics

Pharmacokinetics of GHB are nonlinear and are similar following single or repeat dosing of Xyrem.

Absorption

Following oral administration of Xyrem, GHB is absorbed rapidly across the clinical dose range, with an absolute bioavailability of about 88%. The average peak plasma concentrations (Cmax) following administration of each of the two 2.25 g doses given under fasting conditions 4 hours apart were similar. The average time to peak plasma concentration (Tmax) ranged from 0.5 to 1.25 hours. Following oral administration of Xyrem, the plasma levels of GHB increased more than dose-proportionally, with blood levels increasing 3.7‐fold as total daily dose is doubled from 4.5 g to 9 g. Single doses greater than 4.5 g have not been studied.

Effect of Food

Administration of Xyrem immediately after a high-fat meal resulted in delayed absorption (average Tmax increased from 0.75 hr to 2 hr) and a reduction in Cmax of GHB by a mean of 59% and of systemic exposure (AUC) by 37%.

Distribution

GHB is a hydrophilic compound with an apparent volume of distribution averaging 190 mL/kg to 384 mL/kg. At GHB concentrations ranging from 3 mcg/mL to 300 mcg/mL, less than 1% is bound to plasma proteins.

Elimination

Metabolism

Animal studies indicate that metabolism is the major elimination pathway for GHB, producing carbon dioxide and water via the tricarboxylic acid (Krebs) cycle and secondarily by beta-oxidation. The primary pathway involves a cytosolic NADP +-linked enzyme, GHB dehydrogenase, that catalyzes the conversion of GHB to succinic semialdehyde, which is then biotransformed to succinic acid by the enzyme succinic semialdehyde dehydrogenase. Succinic acid enters the Krebs cycle where it is metabolized to carbon dioxide and water. A second mitochondrial oxidoreductase enzyme, a transhydrogenase, also catalyzes the conversion to succinic semialdehyde in the presence of α-ketoglutarate. An alternate pathway of biotransformation involves β-oxidation via 3,4-dihydroxybutyrate to carbon dioxide and water. No active metabolites have been identified.

Excretion

The clearance of GHB is almost entirely by biotransformation to carbon dioxide, which is then eliminated by expiration. On average, less than 5% of unchanged drug appears in human urine within 6 to 8 hours after dosing. Fecal excretion is negligible. GHB has an elimination half-life of 0.5 to 1 hour.

Specific Populations

Geriatric Patients

There is limited experience with Xyrem in the elderly. Results from a pharmacokinetic study (n=20) in another studied population indicate that the pharmacokinetic characteristics of GHB are consistent among younger (age 48 to 64 years) and older (age 65 to 75 years) adults.

Pediatric Patients

The pharmacokinetics of sodium oxybate were evaluated in pediatric patients from 7 to 17 years of age (n=29). The pharmacokinetic characteristics of sodium oxybate were shown to be similar in adults and pediatric patients. Body weight was found to be the major intrinsic factor affecting oxybate pharmacokinetics.

Male and Female Patients

In a study of 18 female and 18 male healthy adult volunteers, no gender differences were detected in the pharmacokinetics of GHB following a single Xyrem oral dose of 4.5 g.

Racial or Ethnic Groups

There are insufficient data to evaluate any pharmacokinetic differences among races.

Patients with Renal Impairment

No pharmacokinetic study in patients with renal impairment has been conducted.

Patients with Hepatic Impairment

The pharmacokinetics of GHB in 16 cirrhotic patients, half without ascites (Child’s Class A) and half with ascites (Child’s Class C), were compared to the kinetics in 8 subjects with normal hepatic function after a single Xyrem oral dose of 25 mg/kg. AUC values were double in the cirrhotic patients, with apparent oral clearance reduced from 9.1 mL/min/kg in healthy adults to 4.5 and 4.1 mL/min/kg in Class A and Class C patients, respectively. Elimination half-life was significantly longer in Class C and Class A patients than in control patients (mean t1/2 of 59 and 32 minutes, respectively, versus 22 minutes). The starting dose of Xyrem should be reduced in patients with liver impairment [see Dosage and Administration (2.4) and Use in Specific Populations (8.6)].

Drug Interactions Studies

Studies in vitro with pooled human liver microsomes indicate that sodium oxybate does not significantly inhibit the activities of the human isoenzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, or CYP3A up to the concentration of 3 mM (378 mcg/mL), a level considerably higher than levels achieved with recommended doses.

Drug interaction studies in healthy adults (age 18 to 50 years) were conducted with Xyrem and divalproex sodium, diclofenac, and ibuprofen:

  • Divalproex sodium: Co-administration of Xyrem (6 g per day as two equal doses of 3 grams dosed four hours apart) with divalproex sodium (valproic acid, 1250 mg per day) increased mean systemic exposure to GHB as shown by AUC by approximately 25% (AUC ratio range of 0.8 to 1.7), while Cmax was comparable. Co-administration did not appear to affect the pharmacokinetics of valproic acid. A greater impairment on some tests of attention and working memory was observed with co-administration of both drugs than with either drug alone [see Drug Interactions (7.2) and Dosage and Administration (2.5)].
  • Diclofenac: Co-administration of Xyrem (6 g per day as two equal doses of 3 grams dosed four hours apart) with diclofenac (50 mg/dose twice per day) showed no significant differences in systemic exposure to GHB. Co-administration did not appear to affect the pharmacokinetics of diclofenac.
  • Ibuprofen: Co-administration of Xyrem (6 g per day as two equal doses of 3 grams dosed four hours apart) with ibuprofen (800 mg/dose four times per day also dosed four hours apart) resulted in comparable systemic exposure to GHB as shown by plasma Cmax and AUC values. Co-administration did not affect the pharmacokinetics of ibuprofen.

Drug interaction studies in healthy adults demonstrated no pharmacokinetic interactions between Xyrem and protriptyline hydrochloride, zolpidem tartrate, and modafinil. Also, there were no pharmacokinetic interactions with the alcohol dehydrogenase inhibitor fomepizole. However, pharmacodynamic interactions with these drugs cannot be ruled out. Alteration of gastric pH with omeprazole produced no significant change in the pharmacokinetics of GHB. In addition, drug interaction studies in healthy adults demonstrated no pharmacokinetic or clinically significant pharmacodynamic interactions between Xyrem and duloxetine HCl.

13.1. Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Administration of sodium oxybate to rats at oral doses of up to 1,000 mg/kg/day for 83 (males) or 104 (females) weeks resulted in no increase in tumors. Plasma exposure (AUC) at the highest dose tested was 2 times that in humans at the maximum recommended human dose (MRHD) of 9 g per night.

The results of 2-year carcinogenicity studies in mouse and rat with gamma-butyrolactone, a compound that is metabolized to sodium oxybate in vivo, showed no clear evidence of carcinogenic activity. The plasma AUCs of sodium oxybate achieved at the highest doses tested in these studies were less than that in humans at the MRHD.

Mutagenesis

Sodium oxybate was negative in the in vitro bacterial gene mutation assay, an in vitro chromosomal aberration assay in mammalian cells, and in an in vivo rat micronucleus assay.

Impairment of Fertility

Oral administration of sodium oxybate (150, 350, or 1,000 mg/kg/day) to male and female rats prior to and throughout mating and continuing in females through early gestation resulted in no adverse effects on fertility. The highest dose tested is approximately equal to the MRHD on a mg/m² basis.

14. Clinical Studies

The efficacy of Xyrem for the treatment of cataplexy or excessive daytime sleepiness (EDS) in patients 7 years of age and older with narcolepsy has been established in the following adequate and well-controlled trials:

  • Cataplexy in adult narcolepsy in Trials N1 and N2 [see Clinical Studies (14.1)]
  • Excessive Daytime Sleepiness (EDS) in adult narcolepsy in Trials N3 and N4 [see Clinical Studies (14.2)]
  • Cataplexy and EDS in pediatric narcolepsy in Trial N5 [see Clinical Studies (14.3)]

14.1 Cataplexy in Adult Narcolepsy

The effectiveness of Xyrem in the treatment of cataplexy was established in two randomized, double-blind, placebo-controlled, multicenter, parallel-group trials (Trials N1 and N2) in patients with narcolepsy (see Table 5). In Trials N1 and N2, 85% and 80% of patients, respectively, were also being treated with CNS stimulants. The high percentages of concomitant stimulant use make it impossible to assess the efficacy and safety of Xyrem independent of stimulant use. In each trial, the treatment period was 4 weeks and the total nightly Xyrem doses ranged from 3 g to 9 g, with the total nightly dose administered as two equal doses. The first dose each night was taken at bedtime and the second dose was taken 2.5 to 4 hours later. There were no restrictions on the time between food consumption and dosing.

Trial N1 enrolled 136 narcoleptic patients with moderate to severe cataplexy (median of 21 cataplexy attacks per week) at baseline. Prior to randomization, medications with possible effects on cataplexy were withdrawn, but stimulants were continued at stable doses. Patients were randomized to receive placebo, Xyrem 3 g per night, Xyrem 6 g per night, or Xyrem 9 g per night.

Trial N2 was a randomized-withdrawal trial with 55 narcoleptic patients who had been taking open-label Xyrem for 7 to 44 months prior to study entry. To be included, patients were required to have a history of at least 5 cataplexy attacks per week prior to any treatment for cataplexy. Patients were randomized to continued treatment with Xyrem at their stable dose (ranging from 3 g to 9 g per night) or to placebo for 2 weeks. Trial N2 was designed specifically to evaluate the continued efficacy of sodium oxybate after long-term use.

The primary efficacy measure in Trials N1 and N2 was the frequency of cataplexy attacks.

Table 5. Median Number of Cataplexy Attacks in Trials N1 and N2:

Trial/Dosage GroupBaselineMedian Change from BaselineComparison to Placebo (p-value)
Trial N1 (Prospective, Randomized, Parallel Group Trial)
  (median attacks/week)  
Placebo (n=33) 20.5 -4
Xyrem 6 g per night (n=31) 23.0 -10 0.0451
Xyrem 9 g per night (n=33) 23.5 -16 0.0016
Trial N2 (Randomized-Withdrawal Trial)
  (median attacks/2 weeks)  
Placebo (n=29) 4.0 21
Xyrem (n=26) 1.9 0 <0.001

In Trial N1, both the 6 g and 9 g per night Xyrem doses resulted in statistically significant reductions in the frequency of cataplexy attacks. The 3 g per night dose had little effect. In Trial N2, patients randomized to placebo after discontinuing long-term open-label Xyrem therapy experienced a significant increase in cataplexy attacks (p<0.001), providing evidence of long-term efficacy of Xyrem. In Trial N2, the response was numerically similar for patients treated with doses of 6 g to 9 g per night, but there was no effect seen in patients treated with doses less than 6 g per night, suggesting little effect at these doses.

14.2 Excessive Daytime Sleepiness in Adult Narcolepsy

The effectiveness of Xyrem in the treatment of excessive daytime sleepiness in patients with narcolepsy was established in two randomized, double-blind, placebo-controlled trials (Trials N3 and N4) (see Tables 6 to 8). Seventy-eight percent of patients in Trial N3 were also being treated with CNS stimulants.

Trial N3 was a multicenter randomized, double-blind, placebo-controlled, parallel-group trial that evaluated 228 patients with moderate to severe symptoms at entry into the study including a median Epworth Sleepiness Scale (see below) score of 18, and a Maintenance of Wakefulness Test (see below) score of 8.3 minutes. Patients were randomized to one of 4 treatment groups: placebo, Xyrem 4.5 g per night, Xyrem 6 g per night, or Xyrem 9 g per night. The period of double-blind treatment in this trial was 8 weeks. Antidepressants were withdrawn prior to randomization; stimulants were continued at stable doses.

The primary efficacy measures in Trial N3 were the Epworth Sleepiness Scale and the Clinical Global Impression of Change. The Epworth Sleepiness Scale is intended to evaluate the extent of sleepiness in everyday situations by asking the patient a series of questions. In these questions, patients were asked to rate their chances of dozing during each of 8 activities on a scale from 0-3 (0=never; 1=slight; 2=moderate; 3=high). Higher total scores indicate a greater tendency to sleepiness. The Clinical Global Impression of Change is evaluated on a 7-point scale, centered at No Change, and ranging from Very Much Worse to Very Much Improved. In Trial N3, patients were rated by evaluators who based their assessments on the severity of narcolepsy at baseline.

In Trial N3, statistically significant improvements were seen on the Epworth Sleepiness Scale score at Week 8 and on the Clinical Global Impression of Change score at Week 8 with the 6 g and 9 g per night doses of Xyrem compared to the placebo group.

Table 6. Change from Baseline in Daytime Sleepiness Score (Epworth Sleepiness Scale) at Week 8 in Trial N3 (Range 0-24):

Treatment GroupBaselineWeek 8Median Change from Baseline at Week 8p-value
Placebo (n=59) 17.5 17.0 -0.5 -
Xyrem 6 g per night (n=58) 19.0 16.0 -2.0 <0.001
Xyrem 9 g per night (n=47) 19.0 12.0 -5.0 <0.001

Table 7. Proportion of Patients with a Very Much or Much Improved Clinical Global Impression of Change in Daytime and Nighttime Symptoms in Trial N3:

Treatment GroupPercentages of Responders
(Very Much Improved or Much Improved)
Change from Baseline Significance Compared to Placebo
(p-value)
Placebo (n=59) 22% -
Xyrem 6 g per night (n=58) 52% <0.001
Xyrem 9 g per night (n=47) 64% <0.001

Trial N4 was a multicenter randomized, double-blind, placebo-controlled, parallel-group trial that evaluated 222 patients with moderate to severe symptoms at entry into the study including a median Epworth Sleepiness Scale score of 15, and a Maintenance of Wakefulness Test (see below) score of 10.3 minutes. At entry, patients had to be taking modafinil at stable doses of 200 mg, 400 mg, or 600 mg daily for at least 1 month prior to randomization. The patients enrolled in the study were randomized to one of 4 treatment groups: placebo, Xyrem, modafinil, or Xyrem plus modafinil. Xyrem was administered in a dose of 6 g per night for 4 weeks, followed by 9 g per night for 4 weeks. Modafinil was continued in the modafinil alone and the Xyrem plus modafinil treatment groups at the patient’s prior dose. Trial N4 was not designed to compare the effects of Xyrem to modafinil because patients receiving modafinil were not titrated to a maximal dose. Patients randomized to placebo or to Xyrem treatment were withdrawn from their stable dose of modafinil. Patients taking antidepressants could continue these medications at stable doses.

The primary efficacy measure in Trial N4 was the Maintenance of Wakefulness Test. The Maintenance of Wakefulness Test measures latency to sleep onset (in minutes) averaged over 4 sessions at 2-hour intervals following nocturnal polysomnography. For each test session, the subject was asked to remain awake without using extraordinary measures. Each test session is terminated after 20 minutes if no sleep occurs, or after 10 minutes, if sleep occurs. The overall score is the mean sleep latency for the 4 sessions.

In Trial N4, a statistically significant improvement in the change in the Maintenance of Wakefulness Test score from baseline at Week 8 was seen in the Xyrem and Xyrem plus modafinil groups compared to the placebo group.

This trial was not designed to compare the effects of Xyrem to modafinil, because patients receiving modafinil were not titrated to a maximally effective dose.

Table 8. Change in Baseline in the Maintenance of Wakefulness Test Score (in minutes) at Week 8 in Trial N4:

Treatment GroupBaselineWeek 8Mean Change from Baseline at Week 8p-value
Placebo (modafinil withdrawn) (n=55) 9.7 6.9 -2.7 -
Xyrem (modafinil withdrawn) (n=50) 11.3 12.0 0.6 <0.001
Xyrem plus modafinil (n=54) 10.4 13.2 2.7 <0.001

14.3 Cataplexy and Excessive Daytime Sleepiness in Pediatric Narcolepsy

The effectiveness of Xyrem in the treatment of cataplexy and excessive daytime sleepiness in pediatric patients 7 years of age and older with narcolepsy was established in a double-blind, placebo-controlled, randomized-withdrawal study (Trial N5) (NCT02221869). The study was conducted in 106 pediatric patients (median age: 12 years; range: 7 to 17 years) with a baseline history of at least 14 cataplexy attacks in a typical 2-week period prior to any treatment for narcolepsy symptoms. Of the 106 patients, 2 did not receive study drug and 63 patients were randomized 1:1 either to continued treatment with Xyrem or to placebo. Randomization to placebo was stopped early as the efficacy criterion was met at the pre-planned interim analysis.

Patients entered the study either taking a stable dose of Xyrem or were Xyrem-naïve. CNS stimulants were allowed at entry, and approximately 50% of patients used a stable dose of stimulant throughout the stable-dose and double-blind periods. Xyrem-naïve patients were initiated and titrated based on body weight over a period of up to 10 weeks. The total nightly dose was administered in two divided doses, with the first dose given at nighttime and the second given 2.5 to 4 hours later [see Dosage and Administration (2.2)]. Once a stable dose of Xyrem had been achieved, these patients entered the 2-week stable-dose period; patients taking a stable dose of Xyrem at study entry remained taking this dose for 3 weeks, prior to randomization. Efficacy was established at doses ranging from 3 g to 9 g of Xyrem per night.

The primary efficacy measure was the change in frequency of cataplexy attacks. In addition, change in cataplexy severity was evaluated with the Clinical Global Impression of Change for cataplexy severity [see Clinical Studies (14.2) for description of scale]. The efficacy of Xyrem in the treatment of excessive daytime sleepiness in pediatric patients with narcolepsy was evaluated with the change in the Epworth Sleepiness Scale (Child and Adolescent) score. The Epworth Sleepiness Scale (Child and Adolescent) is a modified version of the scale used in adult clinical trials described above [see Clinical Studies (14.2) for description and scoring]. The overall change in narcolepsy condition was assessed by the Clinical Global Impression of Change for narcolepsy overall. Efficacy was assessed during or at the end of the 2-week double-blind treatment period, relative to the last 2 weeks or end of the stable-dose period (see Tables 9 and 10).

Pediatric patients taking stable doses of Xyrem who were withdrawn from Xyrem treatment and randomized to placebo during the double-blind treatment period experienced a statistically significant increase in weekly cataplexy attacks compared with patients who were randomized to continue treatment with Xyrem. Patients randomized to receive placebo during the double-blind treatment period experienced a statistically significant worsening of EDS compared with patients randomized to continue receiving Xyrem (see Table 9).

Table 9. Number of Weekly Cataplexy Attacks and Epworth Sleepiness Scale (Child and Adolescent) Score (Trial N5):

Treatment GroupBaseline*,† Double-blind Treatment Period‡,§ Median Change from Baseline Comparison to Placebo (p-value)
Median Number of Cataplexy Attacks (attacks/week)
Placebo (n=32) 4.7 21.3 12.7 -
Xyrem (n=31) 3.5 3.8 0.3 <0.0001
Median Epworth Sleepiness Scale (Child and Adolescent) Score
Placebo (n=31**) 11 12 3 -
Xyrem (n=30**) 8 9 0 0.0004

* For weekly number of cataplexy attacks, baseline value is calculated from the last 14 days of the stable-dose period.
For Epworth Sleepiness Scale score, baseline value is collected at the end of stable-dose period.
Weekly number of cataplexy attacks is calculated from all days within the double-blind treatment period.
§ For Epworth Sleepiness Scale, value is collected at the end of the double-blind treatment period.
P-value from rank-based analysis of covariance (ANCOVA) with treatment as a factor and rank baseline value as a covariate.
** One patient in each of the treatment groups did not have baseline ESS score available and were not included in this analysis.

Patients randomized to receive placebo during the double-blind treatment period experienced a statistically significant worsening of cataplexy severity and narcolepsy overall according to the clinician’s assessment compared with patients randomized to continue receiving Xyrem (see Table 10).

Table 10. Clinical Global Impression of Change (CGIc) for Cataplexy Severity and Narcolepsy Overall (Trial N5):

Worsened, % CGIc Cataplexy Severity* CGIc Narcolepsy Overall*
Placebo
(n=32)
Xyrem
(n=29)
Placebo
(n=32)
Xyrem
(n=29)
Much worse or very much worse 66% 17% 59% 10%
p-value§ 0.0001 <0.0001

* Responses indicate change of severity or symptoms relative to receiving Xyrem treatment at baseline.
Percentages based on total number of observed values.
Two patients randomized to Xyrem did not have the CGIc assessments completed and were excluded from the analysis.
§ P-value from Pearson’s chi-square test.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.