Alirocumab

Chemical formula: C₆₄₇₂H₉₉₉₆N₁₇₃₆O₂₀₃₂S₄₂ 

Mechanism of action

Alirocumab is a fully human IgG1 monoclonal antibody that binds with high affinity and specificity to proprotein convertase subtilisin kexin type 9 (PCSK9). PCSK9 binds to the low-density lipoprotein receptors (LDLR) on the surface of hepatocytes to promote LDLR degradation within the liver. LDLR is the primary receptor that clears circulating LDL, therefore the decrease in LDLR levels by PCSK9 results in higher blood levels of LDL-C. By inhibiting the binding of PCSK9 to LDLR, alirocumab increases the number of LDLRs available to clear LDL, thereby lowering LDL-C levels.

The LDLR also binds triglyceride-rich VLDL remnant lipoproteins and intermediate-density lipoprotein (IDL). Therefore, alirocumab treatment can produce reductions in these remnant lipoproteins as evidenced by its reductions in apolipoprotein B (Apo B), non-high-density lipoprotein cholesterol (non-HDL-C) and triglycerides (TG). Alirocumab also results in reductions in lipoprotein (a) [Lp(a)], which is a form of LDL that is bound to apolipoprotein (a). However, the LDLR has been shown to have a low affinity for Lp(a), therefore the exact mechanism by which alirocumab lowers Lp(a) is not fully understood.

Pharmacodynamic properties

In genetic studies in humans, PCSK9 variants with either loss-of-function or gain-of-function mutations have been identified. Individuals with single allele PCSK9 loss-of-function mutation have lower levels of LDL-C, which correlated with a significantly lower incidence of coronary heart disease. A few individuals have been reported, who carry PCSK9 loss-of-function mutations in two alleles and have profoundly low LDL-C levels, with HDL-C and TG levels in the normal range. Conversely, gain-of-function mutations in the PCSK9 gene have been identified in patients with increased LDL-C levels and a clinical diagnosis of familial hypercholesterolaemia.

In a multicenter, double-blind, placebo-controlled, 14 week study, 13 patients with heterozygous familial hypercholesterolaemia (heFH) due to gain-of-function mutations in the PCSK9 gene were randomised to receive either alirocumab 150 mg Q2W or placebo. Mean baseline LDL-C was 151.5 mg/dL (3.90 mmol/L). At week 2, the mean reduction from baseline in LDL-C was 62.5% in the alirocumab-treated patients as compared to 8.8% in the placebo patients. At week 8, the mean reduction in LDL-C from baseline with all patients treated with alirocumab was 72.4%.

Pharmacodynamic effects

In in vitro assays, alirocumab did not induce Fc-mediated effector function activity (antibody-dependent cell-mediated toxicity and complement-dependent cytotoxicity) either in the presence or absence of PCSK9 and no soluble immune complexes capable of binding complement proteins were observed for alirocumab when bound to PCSK9.

Pharmacokinetic properties

Absorption

After subcutaneous administration of 50 mg to 300 mg alirocumab, median times to maximum serum concentration (tmax) were 3-7 days. The pharmacokinetics of alirocumab after single subcutaneous administration of 75 mg into the abdomen, upper arm or thigh were similar. The absolute bioavailability of alirocumab after subcutaneous administration was about 85% as determined by population pharmacokinetic analysis. Monthly exposure with 300 mg every 4 weeks treatment was similar to that of 150 mg every 2 weeks. The fluctuations between Cmax and Ctrough were higher for the every 4 weeks dosage regimen. Steady state was reached after 2 to 3 doses with an accumulation ratio up to a maximum of about 2-fold.

Distribution

Following intravenous administration, the volume of distribution was about 0.04 to 0.05 L/kg indicating that alirocumab is distributed primarily in the circulatory system.

Biotransformation

Specific metabolism studies were not conducted, because alirocumab is a protein. Alirocumab is expected to degrade to small peptides and individual amino acids.

Elimination

Two elimination phases were observed for alirocumab. At low concentrations, the elimination is predominately through saturable binding to target (PCSK9), while at higher concentrations the elimination of alirocumab is largely through a non-saturable proteolytic pathway.

Based on a population pharmacokinetic analysis, the median apparent half-life of alirocumab at steady state was 17 to 20 days in patients receiving alirocumab as monotherapy at subcutaneous doses of either 75 mg Q2W or 150 mg Q2W. When co-administered with a statin, the median apparent half-life of alirocumab was 12 days.

Linearity / non-linearity

A slightly greater than dose proportional increase was observed, with a 2.1- to 2.7-fold increase in total alirocumab concentrations for a 2-fold increase in dose from 75 mg to 150 mg Q2W.

Special populations

Elderly

Based on a population pharmacokinetic analysis, age was associated with a small difference in alirocumab exposure at steady state, with no impact on efficacy or safety.

Gender

Based on a population pharmacokinetic analysis, gender has no impact on alirocumab pharmacokinetics.

Race

Based on a population pharmacokinetic analysis, race had no impact on alirocumab pharmacokinetics. Following single-dose subcutaneous administration of 100 mg to 300 mg alirocumab, there was no meaningful difference in exposure between Japanese and Caucasian healthy subjects.

Body weight

Body weight was identified as one significant covariate in the final population PK model impacting alirocumab pharmacokinetics. Alirocumab exposure (AUC0-14d) at steady state at both the 75 and 150 mg Q2W dosing regimen was decreased by 29% and 36% in patients weighing more than 100 kg as compared to patients weighing between 50 kg and 100 kg. This did not translate into a clinically meaningful difference in LDL-C lowering.

Hepatic impairment

In a phase 1 study, after administration of a single 75 mg subcutaneous dose, alirocumab pharmacokinetic profiles in subjects with mild and moderate hepatic impairment were similar as compared to subjects with normal hepatic function. No data are available in patients with severe hepatic impairment.

Renal impairment

Since monoclonal antibodies are not known to be eliminated via renal pathways, renal function is not expected to impact the pharmacokinetics of alirocumab. Population pharmacokinetic analyses showed that alirocumab exposure (AUC0-14d) at steady state at both the 75 and 150 mg Q2W dosing regimen was increased by 22%-35%, and 49%-50% in patients with mild and moderate renal impairment, respectively, compared to patients with normal renal function. The distribution of body weight and age, two covariates impacting alirocumab exposure, were different among renal function categories and most likely explain the observed pharmacokinetic differences. Limited data are available in patients with severe renal impairment; in these patients the exposure to alirocumab was approximately 2-fold higher compared with subjects with normal renal function.

Paediatric population

Limited pharmacokinetic data are available in 18 paediatric patients (8 to 17 years of age) with HoFH. The steady-state mean Ctrough alirocumab concentrations was reached at or before Week 12 in both alirocumab 75 mg Q2W and 150 mg Q2W groups. No studies with alirocumab have been performed in paediatric patients less than 8 years of age.

Pharmacokinetic / pharmacodynamic relationship(s)

The pharmacodynamic effect of alirocumab in lowering LDL-C is indirect, and mediated through the binding to PCSK9. A concentration-dependent reduction in free PCSK9 and LDL-C is observed until target saturation is achieved. Upon saturation of PCSK9 binding, further increases in alirocumab concentrations do not result in a further LDL-C reduction, however an extended duration of the LDL-C lowering effect is observed.

Preclinical safety data

Non-clinical data reveal no special hazard for humans based on evaluations of safety pharmacology, and repeated dose toxicity.

Reproductive toxicology studies in rats and monkeys indicated that alirocumab, like other IgG antibodies, crosses the placental barrier.

There were no adverse effects on surrogate markers of fertility (e.g. estrous cyclicity, testicular volume, ejaculate volume, sperm motility, or total sperm count per ejaculate) in monkeys, and no alirocumab-related anatomic pathology or histopathology findings in reproductive tissues in any rat or monkey toxicology study.

There were no adverse effects on fetal growth or development in rats or monkeys. Maternal toxicity was not evident in pregnant monkeys at systemic exposures that were 81 times the human exposure at the 150 mg Q2W dose. However, maternal toxicity was noted in pregnant rats at systemic exposures estimated to be approximately 5.3 times greater than the human exposure at the 150 mg Q2W dose (based on exposure measured in non-pregnant rats during a 5-week toxicology study).

The offspring of monkeys that received high doses of alirocumab weekly throughout pregnancy had a weaker secondary immune response to antigen challenge than did the offspring of control animals. There was no other evidence of alirocumab-related immune dysfunction in the offspring.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.